Home
Class 12
MATHS
Sum of infinity the series 1 + (1^(2)...

Sum of infinity the series
`1 + (1^(2) + 2^(2) )/(2!) + (1^(2) + 2^(2) + 3^(2))/(3!) + ...=`

A

11e

B

13e

C

`(17)/(6)e`

D

`(5)/(3)e`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the infinite series \[ S = 1 + \frac{1^2 + 2^2}{2!} + \frac{1^2 + 2^2 + 3^2}{3!} + \ldots \] we will derive a formula for the \(n\)-th term and then sum the series. ### Step 1: Identify the \(n\)-th term The \(n\)-th term of the series can be expressed as: \[ T_n = \frac{1^2 + 2^2 + 3^2 + \ldots + n^2}{n!} \] ### Step 2: Use the formula for the sum of squares We know that the sum of the squares of the first \(n\) natural numbers is given by: \[ 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \] Substituting this into our expression for \(T_n\): \[ T_n = \frac{\frac{n(n + 1)(2n + 1)}{6}}{n!} = \frac{n(n + 1)(2n + 1)}{6n!} \] ### Step 3: Rewrite the series Now, we can rewrite the series \(S\) as: \[ S = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \frac{n(n + 1)(2n + 1)}{6n!} \] ### Step 4: Simplify the expression We can factor out \(\frac{1}{6}\): \[ S = \frac{1}{6} \sum_{n=1}^{\infty} \frac{n(n + 1)(2n + 1)}{n!} \] ### Step 5: Break down the summation We can break down the summation into simpler parts. Notice that: \[ n(n + 1)(2n + 1) = 2n^3 + 3n^2 + n \] Thus, we can write: \[ S = \frac{1}{6} \left( 2 \sum_{n=1}^{\infty} \frac{n^3}{n!} + 3 \sum_{n=1}^{\infty} \frac{n^2}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} \right) \] ### Step 6: Evaluate the individual summations Using the known results for the sums involving \(n\): 1. \(\sum_{n=0}^{\infty} \frac{n}{n!} = e\) 2. \(\sum_{n=0}^{\infty} \frac{n^2}{n!} = e\) 3. \(\sum_{n=0}^{\infty} \frac{n^3}{n!} = e\) We can adjust these sums for \(n\) starting from 1: - \(\sum_{n=1}^{\infty} \frac{n}{n!} = e\) - \(\sum_{n=1}^{\infty} \frac{n^2}{n!} = e + e = 2e\) - \(\sum_{n=1}^{\infty} \frac{n^3}{n!} = e + 3e + e = 5e\) ### Step 7: Substitute back into the expression for \(S\) Now substituting these back into our expression for \(S\): \[ S = \frac{1}{6} \left( 2 \cdot 5e + 3 \cdot 2e + 1 \cdot e \right) = \frac{1}{6} (10e + 6e + e) = \frac{1}{6} (17e) \] ### Final Result Thus, the sum of the infinite series is: \[ S = \frac{17e}{6} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

Find the sum to infinity of the series 1^(2)+2^(2)x+3^(2)x^(2)+oo

The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(2))/(3!) +.. Is

Find the sum to n terms of the series 1^(2)/(1)+(1^(2)+2^(2))/(1+2)+(1^(2)+2^(2)+3^(2))/(1+2+3)+cdots

Find the sum to n terms of the series: 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+

If the sum to infinity of the series 3 + (3 + d). (1)/(4) + (3 + 2d) (1)/(4^(2)) + ..... " is " (44)/(9) then find d