Home
Class 12
MATHS
The expansion of [1 + (x^(2))/(2!) + (x^...

The expansion of `[1 + (x^(2))/(2!) + (x^(4))/(4!) + ...]^(2)` in ascending powers of x is

A

`1 + (x^(2))/(2!) + (x^(4))/(4!) + (x^(6))/(6!) +...`

B

`1 + (2^(2)x^(2))/(2!) + (2^(4)x^(4))/(4!) +...`

C

`1 + (2x^(2))/(2!) + (2^(3)x^(4))/(4!) + (2^(5)x^(6))/(6!) + ...`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expansion of the expression \( \left[ 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \right]^2 \) in ascending powers of \( x \). ### Step 1: Recognize the Series The series inside the brackets can be recognized as the Taylor series expansion for the hyperbolic cosine function, \( \cosh(x) \): \[ \cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \] Thus, we can rewrite our expression as: \[ \left[ \cosh(x) \right]^2 \] ### Step 2: Use the Identity for Hyperbolic Cosine Using the identity for the square of the hyperbolic cosine: \[ \cosh^2(x) = \frac{1 + \cosh(2x)}{2} \] we can substitute this into our expression: \[ \left[ \cosh(x) \right]^2 = \frac{1 + \cosh(2x)}{2} \] ### Step 3: Expand \( \cosh(2x) \) Now, we need to expand \( \cosh(2x) \): \[ \cosh(2x) = 1 + \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} + \ldots = 1 + \frac{4x^2}{2} + \frac{16x^4}{24} + \ldots \] This simplifies to: \[ \cosh(2x) = 1 + 2x^2 + \frac{2}{3}x^4 + \ldots \] ### Step 4: Substitute Back into the Expression Now, substitute \( \cosh(2x) \) back into our expression: \[ \frac{1 + \cosh(2x)}{2} = \frac{1 + \left( 1 + 2x^2 + \frac{2}{3}x^4 + \ldots \right)}{2} \] This simplifies to: \[ \frac{2 + 2x^2 + \frac{2}{3}x^4 + \ldots}{2} = 1 + x^2 + \frac{1}{3}x^4 + \ldots \] ### Step 5: Write the Final Expansion Thus, the expansion of \( \left[ 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \right]^2 \) in ascending powers of \( x \) is: \[ 1 + x^2 + \frac{1}{3}x^4 + \ldots \] ### Final Answer The final answer in ascending powers of \( x \) is: \[ 1 + x^2 + \frac{1}{3}x^4 + \ldots \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The expansion of (3x+2)^(-(1)/(2)) is valid in ascending powers of x, if x lies in the interval.

If a_(0), a_(1), a(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that a_(0) a_(2) - a_(1) a_(3) + a_(2) a_(4) - …+ a_(2n-2) a_(2n)= a_(n+1) .

The coefficient of x^(4) in the expansion of {sqrt(1+x^(2))-x}^(-1) in ascending powers of x when |x|<1, is 0 b.(1)/(2) c.-(1)/(2) d.-(1)/(8)

Find the coefficient of x in the expansion of [sqrt(1+x^(2))-x]^(-1) in ascending power of x when |x|<1