Home
Class 12
MATHS
If S = sum(n=2)^(oo) (""^(n)C(2))/((n+1)...

If `S = sum_(n=2)^(oo) (""^(n)C_(2))/((n+1)!)` then S =

A

`e//2`

B

`e//2 -1`

C

`e//2+1`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series: \[ S = \sum_{n=2}^{\infty} \frac{{n \choose 2}}{{(n+1)!}} \] ### Step 1: Express \( {n \choose 2} \) The binomial coefficient \( {n \choose 2} \) can be expressed as: \[ {n \choose 2} = \frac{n(n-1)}{2} \] ### Step 2: Substitute \( {n \choose 2} \) into the series Substituting this into the series gives: \[ S = \sum_{n=2}^{\infty} \frac{\frac{n(n-1)}{2}}{(n+1)!} \] ### Step 3: Factor out the constant We can factor out \( \frac{1}{2} \) from the summation: \[ S = \frac{1}{2} \sum_{n=2}^{\infty} \frac{n(n-1)}{(n+1)!} \] ### Step 4: Simplify the factorial Notice that \( (n+1)! = (n+1) \cdot n! \). Thus, we can rewrite the term: \[ \frac{n(n-1)}{(n+1)!} = \frac{n(n-1)}{(n+1) \cdot n!} \] ### Step 5: Rewrite the series Now we can rewrite the series as: \[ S = \frac{1}{2} \sum_{n=2}^{\infty} \frac{n(n-1)}{(n+1) n!} \] ### Step 6: Change the index of summation To simplify further, we can change the index of summation. Let \( m = n + 1 \), then \( n = m - 1 \), and when \( n = 2 \), \( m = 3 \): \[ S = \frac{1}{2} \sum_{m=3}^{\infty} \frac{(m-1)(m-2)}{m \cdot (m-1)!} \] ### Step 7: Simplify the expression This can be simplified as follows: \[ S = \frac{1}{2} \sum_{m=3}^{\infty} \frac{(m-2)}{(m-1)!} \] ### Step 8: Recognize the series The series \( \sum_{m=3}^{\infty} \frac{(m-2)}{(m-1)!} \) can be recognized as related to the exponential function \( e^x \): \[ \sum_{m=0}^{\infty} \frac{m}{m!} = e \] ### Step 9: Evaluate the series Thus, we can relate our series to \( e \): \[ S = \frac{1}{2} \cdot e \] ### Final Result Therefore, the value of \( S \) is: \[ S = \frac{1}{2} e \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

If S=sum_(n=0)^(oo)((log x)^(2n))/((2n)!) then S equals :

If S=sum_(n=2)^(oo)(3n^(2)+1)/((n^(2)-1)^(3)) then (9)/(4S) is

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal

If S=sum_(n=2)^oo (3n^2+1)/(n^2-1)^3 then 9/S=