Home
Class 12
MATHS
The coefficient of x^(n) in the expansio...

The coefficient of `x^(n)` in the expansion of `(e^(7x) + e^(x))/(e^(3x))` is

A

`(4^(n-1) + (-2)^(n))/(n!)`

B

`(4^(n-1) + 2^(n))/(n!)`

C

`(4^(n-1) + (-2)^(n-1))/(n!)`

D

`(4^(n) + (-2)^(n))/(n!)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^n \) in the expansion of \( \frac{e^{7x} + e^{x}}{e^{3x}} \), we will follow these steps: ### Step 1: Simplify the Expression We start by rewriting the expression: \[ \frac{e^{7x} + e^{x}}{e^{3x}} = e^{7x - 3x} + e^{x - 3x} = e^{4x} + e^{-2x} \] ### Step 2: Expand \( e^{4x} \) and \( e^{-2x} \) Using the Taylor series expansion for \( e^x \): \[ e^{x} = \sum_{k=0}^{\infty} \frac{x^k}{k!} \] we can expand \( e^{4x} \) and \( e^{-2x} \). For \( e^{4x} \): \[ e^{4x} = \sum_{k=0}^{\infty} \frac{(4x)^k}{k!} = \sum_{k=0}^{\infty} \frac{4^k x^k}{k!} \] For \( e^{-2x} \): \[ e^{-2x} = \sum_{k=0}^{\infty} \frac{(-2x)^k}{k!} = \sum_{k=0}^{\infty} \frac{(-2)^k x^k}{k!} \] ### Step 3: Combine the Expansions Now we combine the two expansions: \[ e^{4x} + e^{-2x} = \sum_{k=0}^{\infty} \frac{4^k x^k}{k!} + \sum_{k=0}^{\infty} \frac{(-2)^k x^k}{k!} \] This can be rewritten as: \[ = \sum_{k=0}^{\infty} \left( \frac{4^k + (-2)^k}{k!} \right) x^k \] ### Step 4: Identify the Coefficient of \( x^n \) The coefficient of \( x^n \) in the expansion is given by: \[ \frac{4^n + (-2)^n}{n!} \] ### Final Result Thus, the coefficient of \( x^n \) in the expansion of \( \frac{e^{7x} + e^{x}}{e^{3x}} \) is: \[ \frac{4^n + (-2)^n}{n!} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(n) in the expansion of e^(x) is

The coefficient of x^(n) in the expansion of e^(2x+3) is

The coefficient of x^(n) in the expansion of (a+bx+cx^(2))/(e^(x)) is

The coefficient of x^(4) in the expansion of (1-ax-x^(2))/(e^(x)) is

Find the coefficient of x^(5) in the expansion of ((2 + 3x + 4x^(2)))/(e^(x))