Home
Class 12
MATHS
The coefficient of x^(n) in the expansio...

The coefficient of `x^(n)` in the expansion of `(1-ax-x^(2))/(e^(x))` is

A

`((-1)^(n))/(n!) {-n^(2)-n(a+1)+1}`

B

`((-1)^(n))/(n!) {n^(2)-n(a+1)-1}`

C

`((-1)^(n))/(n!) {-n^(2)+n(a+1)+1}`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^n \) in the expansion of \( \frac{1 - ax - x^2}{e^x} \), we can follow these steps: ### Step 1: Expand \( e^{-x} \) We start with the Taylor series expansion of \( e^{-x} \): \[ e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k x^k}{k!} \] ### Step 2: Rewrite the expression We can rewrite the expression \( \frac{1 - ax - x^2}{e^x} \) as: \[ (1 - ax - x^2)e^{-x} \] ### Step 3: Distribute \( e^{-x} \) Now we will distribute \( e^{-x} \) across the terms in the numerator: \[ (1)e^{-x} - (ax)e^{-x} - (x^2)e^{-x} \] ### Step 4: Find the coefficient of \( x^n \) from each term 1. **From \( e^{-x} \)**: The coefficient of \( x^n \) in \( e^{-x} \) is \( \frac{(-1)^n}{n!} \). 2. **From \( -ax e^{-x} \)**: The coefficient of \( x^n \) in \( -ax e^{-x} \) is given by the coefficient of \( x^{n-1} \) in \( e^{-x} \), multiplied by \( -a \): \[ -a \cdot \frac{(-1)^{n-1}}{(n-1)!} \] 3. **From \( -x^2 e^{-x} \)**: The coefficient of \( x^n \) in \( -x^2 e^{-x} \) is given by the coefficient of \( x^{n-2} \) in \( e^{-x} \), multiplied by \( -1 \): \[ -\frac{(-1)^{n-2}}{(n-2)!} \] ### Step 5: Combine the coefficients Now we combine the coefficients from all three terms: \[ \text{Coefficient of } x^n = \frac{(-1)^n}{n!} - a \cdot \frac{(-1)^{n-1}}{(n-1)!} - \frac{(-1)^{n-2}}{(n-2)!} \] ### Step 6: Simplify the expression Factoring out \( (-1)^{n-2} \): \[ = (-1)^{n-2} \left( \frac{(-1)^2}{n!} - a \cdot \frac{(-1)}{(n-1)!} - 1 \cdot \frac{1}{(n-2)!} \right) \] \[ = (-1)^{n-2} \left( \frac{1}{n!} - \frac{a}{(n-1)!} - \frac{1}{(n-2)!} \right) \] ### Final Result Thus, the coefficient of \( x^n \) in the expansion of \( \frac{1 - ax - x^2}{e^x} \) is: \[ \frac{(-1)^n}{n!} - \frac{a(-1)^{n-1}}{(n-1)!} - \frac{(-1)^{n-2}}{(n-2)!} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(4) in the expansion of (1-ax-x^(2))/(e^(x)) is

The coefficient of x^(n) in the expansion of (a+bx+cx^(2))/(e^(x)) is

The coefficient of x^(n) in the expansion of e^(x) is

The coefficient of x^(n) in the expansion of (1+x)(1-x)^(n) is

The coefficient of x^(n) in the expansion of e^(2x+3) is