Home
Class 12
MATHS
1.3 + (2.4)/(1.2) + (3.5)/(1.2.3) + (4....

`1.3 + (2.4)/(1.2) + (3.5)/(1.2.3) + (4.6)/(1.2.3.4) +...`

A

e

B

2e

C

3e

D

4e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series given by \[ S = 1.3 + \frac{2.4}{1.2} + \frac{3.5}{1.2.3} + \frac{4.6}{1.2.3.4} + \ldots \] we will first express the general term of the series and then find its sum. ### Step 1: Identify the General Term The series can be rewritten in a more general form. The \( n \)-th term can be expressed as: \[ T_n = \frac{n(n+2)}{n!} \] where \( n! \) is the factorial of \( n \). ### Step 2: Simplify the General Term We can simplify \( T_n \): \[ T_n = \frac{n(n+2)}{n!} = \frac{n^2 + 2n}{n!} = \frac{n^2}{n!} + \frac{2n}{n!} \] This can be further broken down into: \[ T_n = \frac{n}{(n-1)!} + \frac{2}{(n-1)!} \] ### Step 3: Rewrite the Series Now we can express the series \( S \) as: \[ S = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \left( \frac{n}{(n-1)!} + \frac{2}{(n-1)!} \right) \] ### Step 4: Change the Index of Summation To simplify the summation, we can change the index of summation. Let \( m = n - 1 \), then \( n = m + 1 \) and the series becomes: \[ S = \sum_{m=0}^{\infty} \left( \frac{m+1}{m!} + \frac{2}{m!} \right) \] This can be separated into two sums: \[ S = \sum_{m=0}^{\infty} \frac{m+1}{m!} + 2 \sum_{m=0}^{\infty} \frac{1}{m!} \] ### Step 5: Evaluate Each Sum 1. The first sum can be evaluated as follows: \[ \sum_{m=0}^{\infty} \frac{m+1}{m!} = \sum_{m=0}^{\infty} \frac{m}{m!} + \sum_{m=0}^{\infty} \frac{1}{m!} = \sum_{m=1}^{\infty} \frac{1}{(m-1)!} + \sum_{m=0}^{\infty} \frac{1}{m!} = e + e = 2e \] 2. The second sum: \[ 2 \sum_{m=0}^{\infty} \frac{1}{m!} = 2e \] ### Step 6: Combine the Results Combining both results, we get: \[ S = 2e + 2e = 4e \] ### Final Answer Thus, the sum of the series is: \[ \boxed{4e} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

(1) / (1.2) + (1.3) / (1.2.3.4) + (1.3.5) / (1.2.3.4.5.6) + .... oo

1+ (1) / (2) (. 3) / (5) (1.3) / (2.4) ((3) / (5)) ^ (2) + (1.3.5) / (2.4.6) ( (3) / (5)) ^ (3) + ........ oo =

The series expansion of log_(e) [(1 + x^((1 + x))(1-x)^(1-x)] is (1) 2[(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (2) [(x^(2))/(1.2) + (x^(4))/(3.4)+(x^(6))/(5.6)+...] (3) 2[(x^(2))/(1.2) + (x^(4))/(2.3)+(x^(6))/(3.4)+...] (4) 2[(x^(2))/(1.2) -(x^(4))/(2.3)+(x^(6))/(3.4)-...]

Prove that, (1.3)/(1!)+(2.4)/(2!)+(3.5)/(3!)+(4.6)/(4!)+.....=4e

(1)/(2.4)+(1.3)/(2.4.6)+(1.3.5)/(2.4.6.8)+(1.3.5.7)/(2.4.6.8*10)+....oo is equal to

(1)/(2.4)+(1.3)/(2.4.6)+(1.3.5.7)/(2.4.6.8*10)+.........oo is equal to

Sum of n terms of the series (1)/(1.2.3.4.)+(1)/(2.3.4.5)+(1)/(3.4.5.6)+...