Home
Class 12
MATHS
1 + (2^(3))/(2!) + (3^(3))/(3!) + (4^(3)...

`1 + (2^(3))/(2!) + (3^(3))/(3!) + (4^(3))/(4!) +...oo=`

A

3e

B

5e

C

6e

D

7e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 + \frac{2^3}{2!} + \frac{3^3}{3!} + \frac{4^3}{4!} + \ldots \), we will follow these steps: ### Step 1: Identify the General Term The general term of the series can be expressed as: \[ T_n = \frac{n^3}{n!} \] ### Step 2: Rewrite the General Term We can rewrite \( T_n \) using the factorial definition: \[ T_n = \frac{n^3}{n!} = \frac{n \cdot n^2}{n!} = \frac{n^2}{(n-1)!} \] We can further simplify \( n^2 \) as: \[ n^2 = n(n-1) + n \] Thus, we can express \( T_n \) as: \[ T_n = \frac{n(n-1)}{(n-2)!} + \frac{n}{(n-1)!} \] ### Step 3: Split the General Term Now we can split \( T_n \) into two separate summations: \[ T_n = \frac{n(n-1)}{(n-2)!} + \frac{n}{(n-1)!} \] ### Step 4: Set Up the Summation Now we will sum \( T_n \) from \( n=1 \) to \( \infty \): \[ S = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \left( \frac{n(n-1)}{(n-2)!} + \frac{n}{(n-1)!} \right) \] ### Step 5: Adjust the Limits of Summation We need to adjust the limits for each term: 1. For \( \sum_{n=1}^{\infty} \frac{n(n-1)}{(n-2)!} \), we can start from \( n=3 \): \[ \sum_{n=3}^{\infty} \frac{n(n-1)}{(n-2)!} \] This can be rewritten as: \[ \sum_{k=1}^{\infty} \frac{k^2 + k}{k!} \] where \( k = n-2 \). 2. For \( \sum_{n=1}^{\infty} \frac{n}{(n-1)!} \), we can start from \( n=2 \): \[ \sum_{n=2}^{\infty} \frac{n}{(n-1)!} \] ### Step 6: Evaluate Each Summation Using the known series expansions: - The series \( \sum_{n=0}^{\infty} \frac{1}{n!} = e \) - The series \( \sum_{n=1}^{\infty} \frac{n}{n!} = e \) - The series \( \sum_{n=2}^{\infty} \frac{1}{(n-1)!} = e \) Putting it all together: \[ S = \sum_{n=3}^{\infty} \frac{n(n-1)}{(n-2)!} + \sum_{n=2}^{\infty} \frac{n}{(n-1)!} = 2e + e = 5e \] ### Final Result Thus, the sum of the series is: \[ S = 5e \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

1+ (4 ^ (2)) / (3!) + (4 ^ (4)) / (5!) + ...... oo =

The sum of the series 1+(3^(2))/(2!)+(3^(4))/(4!)+(3^(6))/(6!)+… to oo is

If x-(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+.... to oo=y then y+(y^(2))/(2!)+(y^(3))/(3!)+....+ to oo is equal to

lm_ (n rarr oo) ((1 ^ (3)) / (n ^ (4)) + (2 ^ (4)) / (n ^ (4)) + (3 ^ (3)) / (n ^ (4)) + ...... + (n ^ (3)) / (n ^ (4)))

(3)/(4)-(5)/(4^(2))+(3)/(4^(3))-(5)/(4^(4))+(3)/(4^(5))-(5)/(4^(6))+.....oo= ?

Let P_ (n) = (2 ^ (3) -1) / (2 ^ (3) +1) * (3 ^ (3) -1) / (3 ^ (3) +1) * (4 ^ ( 3) -1) / (4 ^ (3) +1) ...... (n ^ (3) -1) / (n ^ (3) +1) Prove that lim_ (n rarr oo) P_ ( n) = (2) / (3)