Home
Class 12
MATHS
Sum the series (2)/(3!) + (4)/(5!) + (6)...

Sum the series `(2)/(3!) + (4)/(5!) + (6)/(7!) + (8)/(9!) + ...`

A

e

B

2e

C

`e^(-1)`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To sum the series \( S = \frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \frac{8}{9!} + \ldots \), we can follow these steps: ### Step 1: Rewrite the terms of the series We can express each term in the series in a different form. Notice that: - \( 2 = 3 - 1 \) - \( 4 = 5 - 1 \) - \( 6 = 7 - 1 \) - \( 8 = 9 - 1 \) Thus, we can rewrite the series as: \[ S = \left( \frac{3 - 1}{3!} \right) + \left( \frac{5 - 1}{5!} \right) + \left( \frac{7 - 1}{7!} \right) + \left( \frac{9 - 1}{9!} \right) + \ldots \] ### Step 2: Separate the series into two parts Now, we can separate the series into two distinct sums: \[ S = \left( \frac{3}{3!} + \frac{5}{5!} + \frac{7}{7!} + \ldots \right) - \left( \frac{1}{3!} + \frac{1}{5!} + \frac{1}{7!} + \ldots \right) \] Let: \[ S_1 = \frac{3}{3!} + \frac{5}{5!} + \frac{7}{7!} + \ldots \] \[ S_2 = \frac{1}{3!} + \frac{1}{5!} + \frac{1}{7!} + \ldots \] Thus, we have: \[ S = S_1 - S_2 \] ### Step 3: Simplify \( S_1 \) We can express \( S_1 \) as: \[ S_1 = \sum_{n=1}^{\infty} \frac{2n + 1}{(2n + 1)!} \] This can be rewritten as: \[ S_1 = \sum_{n=1}^{\infty} \frac{2n}{(2n + 1)!} + \sum_{n=1}^{\infty} \frac{1}{(2n + 1)!} \] The first part can be simplified using the identity \( \frac{2n}{(2n + 1)!} = \frac{2}{(2n)!} \): \[ S_1 = 2 \sum_{n=1}^{\infty} \frac{1}{(2n)!} + \sum_{n=1}^{\infty} \frac{1}{(2n + 1)!} \] ### Step 4: Evaluate \( S_2 \) The series \( S_2 \) can be recognized as half of the series for \( e^x \): \[ S_2 = \sum_{n=1}^{\infty} \frac{1}{(2n)!} = \frac{1}{2} \left( e - 1 \right) \] ### Step 5: Combine the results Now we can combine the results of \( S_1 \) and \( S_2 \): \[ S = S_1 - S_2 \] Using the known expansions for \( e^x \), we find: \[ S_1 = e - 1 - S_2 \] Substituting \( S_2 \): \[ S = (e - 1) - \frac{1}{2}(e - 1) = \frac{1}{2}(e - 1) \] ### Final Result Thus, the sum of the series is: \[ S = \frac{1}{2}(e - 1) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

Sum to n terms of the series (1)/(5!)+(1)/(6!)+(2!)/(7!)+(3!)/(8!)+...... is

The sum of series (2)/(3!)+(4)/(5!)+(6)/(7!)+..........oo is :

Find the sum of the series (27)/(8) + (9)/(4) + (3)/(2) + … oo

Find the sum of the series 1-(3)/(2)+(5)/(4)-(7)/(8)+(9)/(16).........oo