Home
Class 12
MATHS
(2)/(1!) + (4)/(3!) + (6)/(5!) + (8)/(7!...

`(2)/(1!) + (4)/(3!) + (6)/(5!) + (8)/(7!)+... oo = e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( \frac{2}{1!} + \frac{4}{3!} + \frac{6}{5!} + \frac{8}{7!} + \ldots \) and show that it equals \( e \), we can follow these steps: ### Step 1: Rewrite the Series We can express the series in a more manageable form: \[ S = \sum_{n=0}^{\infty} \frac{2(n+1)}{(2n+1)!} \] This can be rewritten as: \[ S = 2 \sum_{n=0}^{\infty} \frac{n+1}{(2n+1)!} \] ### Step 2: Break Down the Terms Notice that: \[ \frac{n+1}{(2n+1)!} = \frac{n}{(2n+1)!} + \frac{1}{(2n+1)!} \] Thus, we can split the series: \[ S = 2 \left( \sum_{n=0}^{\infty} \frac{n}{(2n+1)!} + \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} \right) \] ### Step 3: Simplify Each Series 1. The second series can be recognized as: \[ \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} = \sinh(1) \] 2. For the first series, we can use the identity: \[ \sum_{n=0}^{\infty} \frac{n}{(2n+1)!} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(2n)!} = \frac{1}{2} \cosh(1) \] ### Step 4: Combine the Results Now we can combine the results: \[ S = 2 \left( \frac{1}{2} \cosh(1) + \sinh(1) \right) \] Using the definitions of hyperbolic functions: \[ \cosh(1) = \frac{e + e^{-1}}{2}, \quad \sinh(1) = \frac{e - e^{-1}}{2} \] Thus: \[ S = 2 \left( \frac{1}{2} \cdot \frac{e + e^{-1}}{2} + \frac{e - e^{-1}}{2} \right) \] This simplifies to: \[ S = e \] ### Conclusion Therefore, we have shown that: \[ \frac{2}{1!} + \frac{4}{3!} + \frac{6}{5!} + \frac{8}{7!} + \ldots = e \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS )|5 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS )|28 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

Which is greaster: (2)/(7) of (3)/(4) or (3)/(5) of (5)/(8)( ii) (1)/(2) of (6)/(7) or (2)/(3) of (3)/(7)

The sum of series (2)/(3!)+(4)/(5!)+(6)/(7!)+..........oo is :

Express the following as improper fractions: (a) (7)(3)/(4) (b) (5)(6)/(7) (c) (2)(5)/(6) (d) (10)(3)/(5) (e) (9) (3)/(7) (f) (8)(9)/(4)