Home
Class 12
MATHS
(1)/(2) + (3)/(2) . (1)/(4) + (5)/(3).(1...

`(1)/(2) + (3)/(2) . (1)/(4) + (5)/(3).(1)/(8) + (7)/(4).(1)/(16) + ...=` .........

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = \frac{1}{2} + \frac{3}{2} \cdot \frac{1}{4} + \frac{5}{3} \cdot \frac{1}{8} + \frac{7}{4} \cdot \frac{1}{16} + \ldots \] we can analyze the pattern in the terms. ### Step 1: Identify the general term The series can be expressed in terms of \( n \) as follows: - The \( n \)-th term can be written as: \[ T_n = \frac{(2n - 1)}{n} \cdot \left(\frac{1}{2}\right)^{n} \] This is because: - The numerator follows the pattern \( 1, 3, 5, 7, \ldots \) which can be represented as \( 2n - 1 \). - The denominator follows the pattern \( 1, 2, 3, 4, \ldots \) which is simply \( n \). - The factor \( \left(\frac{1}{2}\right)^{n} \) represents the decreasing powers of 2. ### Step 2: Write the sum in summation notation Now, we can express the sum \( S \) in summation notation: \[ S = \sum_{n=1}^{\infty} \frac{(2n - 1)}{n} \cdot \left(\frac{1}{2}\right)^{n} \] ### Step 3: Split the summation We can split the summation into two parts: \[ S = \sum_{n=1}^{\infty} \frac{2n}{n} \cdot \left(\frac{1}{2}\right)^{n} - \sum_{n=1}^{\infty} \frac{1}{n} \cdot \left(\frac{1}{2}\right)^{n} \] This simplifies to: \[ S = 2 \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n} - \sum_{n=1}^{\infty} \frac{1}{n} \cdot \left(\frac{1}{2}\right)^{n} \] ### Step 4: Evaluate the first summation The first summation is a geometric series: \[ \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1 \] So, \[ 2 \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n} = 2 \cdot 1 = 2 \] ### Step 5: Evaluate the second summation The second summation is related to the logarithm: \[ \sum_{n=1}^{\infty} \frac{1}{n} \cdot \left(\frac{1}{2}\right)^{n} = -\log(1 - \frac{1}{2}) = -\log(\frac{1}{2}) = \log(2) \] ### Step 6: Combine the results Now we can combine both results: \[ S = 2 - \log(2) \] ### Final Answer Thus, the sum of the series is: \[ S = 2 - \log(2) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS )|28 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE )|4 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

(7)/(8)+(3)/(4)((1)/(2))(2)/(3)-(1)/(3))

(7)/(8)-(3)/(4)+(1)/(2)=(7-3+1)/(8)=

7(1)/(3)-:(2)/(3)" of "2(1)/(5)+1(3)/(8)-:2(3)/(4)-1(1)/(2)

7(1)/(3)-:(2)/(3)" of "2(1)/(5)+1(3)/(8)-:2(3)/(4)-1(1)/(2)

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

(7)/(8)-:(7(1)/(2)-5(1)/(6)-:2(3)/(4))+4(1)/(2)

7(1)/(2)-((8)/(11)xx7(1)/(3))-:(3(1)/(2)-2(1)/(4))

4(1)/(3) - 3 (2)/3 -:1(1)/(3) + ? -: 3 (1)/(2) -: 1(1)/(5) =7

7(1)/(2)+(1)/(2)+(1)/(2) of (1)/(4)-(2)/(5)xx2(1)/(3)-:1(1)/(8) of (1(2)/(5)-1(1)/(3))

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is