Home
Class 12
MATHS
The coefficient of x^(n) in the expansio...

The coefficient of `x^(n)` in the expansion of `(e^(7x)+e^(x))/(e^(3x))` is

A

`(4^(n-1) + (-2)^(n))/(n!)`

B

`(4^(n-1) + 2^(n))/(n!)`

C

`(4^(n-1) + (-2)^(n-1))/(n!)`

D

`(4^(n) + (-2)^(n))/(n!)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^n \) in the expansion of \( \frac{e^{7x} + e^x}{e^{3x}} \), we can follow these steps: 1. **Rewrite the Expression**: We start by rewriting the given expression: \[ \frac{e^{7x} + e^x}{e^{3x}} = e^{7x - 3x} + e^{x - 3x} = e^{4x} + e^{-2x} \] 2. **Expand Each Exponential**: We can expand \( e^{4x} \) and \( e^{-2x} \) using their Taylor series: \[ e^{4x} = \sum_{k=0}^{\infty} \frac{(4x)^k}{k!} = \sum_{k=0}^{\infty} \frac{4^k x^k}{k!} \] \[ e^{-2x} = \sum_{m=0}^{\infty} \frac{(-2x)^m}{m!} = \sum_{m=0}^{\infty} \frac{(-2)^m x^m}{m!} \] 3. **Combine the Series**: Now we combine the two expansions: \[ e^{4x} + e^{-2x} = \sum_{k=0}^{\infty} \frac{4^k x^k}{k!} + \sum_{m=0}^{\infty} \frac{(-2)^m x^m}{m!} \] 4. **Find the Coefficient of \( x^n \)**: The coefficient of \( x^n \) in the combined series is the sum of the coefficients from each series: \[ \text{Coefficient of } x^n = \frac{4^n}{n!} + \frac{(-2)^n}{n!} \] 5. **Simplify the Result**: We can factor out \( \frac{1}{n!} \): \[ \text{Coefficient of } x^n = \frac{1}{n!} (4^n + (-2)^n) \] Thus, the coefficient of \( x^n \) in the expansion of \( \frac{e^{7x} + e^x}{e^{3x}} \) is: \[ \frac{4^n + (-2)^n}{n!} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(n) in the expansion of e^(x) is

The coefficient of x^(n) in the expansion of e^(2x+3) is

The coefficient of x^(n) in the expansion of (a+bx+cx^(2))/(e^(x)) is

The coefficient of x^(4) in the expansion of (1-ax-x^(2))/(e^(x)) is