Home
Class 12
MATHS
(2)/(1!) + (4)/(3!) + (6)/(5!) + (8)/(7!...

`(2)/(1!) + (4)/(3!) + (6)/(5!) + (8)/(7!) + ...oo =`

A

`e^(-1)`

B

e

C

2e

D

3e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = \frac{2}{1!} + \frac{4}{3!} + \frac{6}{5!} + \frac{8}{7!} + \ldots \] we can rewrite the terms in a more manageable form. Notice that the numerators can be expressed as \(2n\) where \(n\) is an integer starting from 1, and the denominators can be expressed as \((2n-1)!\). Thus, we can rewrite the series as: \[ S = \sum_{n=1}^{\infty} \frac{2n}{(2n-1)!} \] Next, we can separate the terms in the series: \[ S = \sum_{n=1}^{\infty} \frac{2n}{(2n-1)!} = 2 \sum_{n=1}^{\infty} \frac{n}{(2n-1)!} \] Now, we can express \(n\) in terms of factorials: \[ n = (2n-1) - (2n-2) \] This gives us: \[ \sum_{n=1}^{\infty} \frac{n}{(2n-1)!} = \sum_{n=1}^{\infty} \frac{(2n-1) - (2n-2)}{(2n-1)!} \] This can be separated into two sums: \[ \sum_{n=1}^{\infty} \frac{(2n-1)}{(2n-1)!} - \sum_{n=1}^{\infty} \frac{(2n-2)}{(2n-1)!} \] The first sum simplifies to: \[ \sum_{n=1}^{\infty} \frac{1}{(2n-2)!} = \sum_{m=0}^{\infty} \frac{1}{(2m)!} = \cosh(1) \] The second sum simplifies to: \[ \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} = \sinh(1) \] Thus, we can express \(S\) as: \[ S = 2 \left( \sinh(1) - \cosh(1) \right) \] Now, we can evaluate \(S\): \[ S = 2 \left( e - 1 \right) \] Finally, we find that: \[ S = 2 \] Thus, the sum of the series is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

1+ (1) / (4) + (1) / (4) (3) / (8) + (1) / (4) (3) / (8) (5) / (12) + ... . + oo

The sum of series (2)/(3!)+(4)/(5!)+(6)/(7!)+..........oo is :

Which is greaster: (2)/(7) of (3)/(4) or (3)/(5) of (5)/(8)( ii) (1)/(2) of (6)/(7) or (2)/(3) of (3)/(7)

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then