Home
Class 12
MATHS
Let n = 2006! Then (1)/(log(2)n) + (1)/...

Let `n = 2006!` Then `(1)/(log_(2)n) + (1)/(log_(3)n) + ... + (1)/(log_(2006)n) =`

A

2006

B

2005

C

2005!

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \cdots + \frac{1}{\log_{2006} n} \] where \( n = 2006! \). ### Step 1: Use the Change of Base Formula We start by applying the change of base formula for logarithms, which states that: \[ \log_a b = \frac{1}{\log_b a} \] Thus, we can rewrite each term in the expression: \[ \frac{1}{\log_k n} = \log_n k \] So, we can rewrite the entire sum as: \[ \log_n 2 + \log_n 3 + \cdots + \log_n 2006 \] ### Step 2: Combine the Logarithms Using the property of logarithms that states \( \log_a b + \log_a c = \log_a (bc) \), we can combine the logarithms: \[ \log_n (2 \times 3 \times 4 \times \cdots \times 2006) \] This product can be recognized as \( \log_n (2006!) \). ### Step 3: Substitute \( n \) Since we know \( n = 2006! \), we can substitute this into our expression: \[ \log_{2006!} (2006!) \] ### Step 4: Evaluate the Logarithm Using the property of logarithms that states \( \log_a a = 1 \), we find: \[ \log_{2006!} (2006!) = 1 \] ### Final Answer Thus, the value of the original expression is: \[ \frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \cdots + \frac{1}{\log_{2006} n} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

If n>1 then prove that (1)/(log_(2)n)+(1)/(log_(3)n)+............+((1)/(log_(53)n)=(1)/(log_(53!)n)

If n>1, then prove that(1)/(log_(2)n)+(1)/(log_(3)n)+...+(1)/(log_(53)n)=(1)/(log_(53)n)

If n=(2017)! , then what is (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+....+(1)/(log_(2017)n) equal to?

If n=|__2002, evaluate (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+......+(1)/(log_(2002)n)

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

Let n=75600 ,then find the value of (4)/(log_(2)n)+(3)/(log_(3)n)+(2)/(log_(5)n)+(1)/(log_(7)n)