Home
Class 12
MATHS
The sum of the series 1 +(1)/(4.2!)+ (1...

The sum of the series ` 1 +(1)/(4.2!)+ (1)/(16.4!) + (1)/(64.6!) + ...oo` is

A

`(e-1)/(2sqrt(e))`

B

`(e+1)/(2sqrt(e))`

C

`(e-1)/(sqrte)`

D

`e^-`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( S = 1 + \frac{1}{4 \cdot 2!} + \frac{1}{16 \cdot 4!} + \frac{1}{64 \cdot 6!} + \ldots \), we can follow these steps: ### Step 1: Rewrite the series We can express the terms in the series in a more manageable form. Notice that the denominators can be rewritten as: \[ S = 1 + \frac{1}{2^2 \cdot 2!} + \frac{1}{2^4 \cdot 4!} + \frac{1}{2^6 \cdot 6!} + \ldots \] This gives us: \[ S = 1 + \frac{1}{2^2 \cdot 2!} + \frac{1}{2^4 \cdot 4!} + \frac{1}{2^6 \cdot 6!} + \ldots \] ### Step 2: Identify the pattern We see that the series can be expressed as: \[ S = 1 + \sum_{n=1}^{\infty} \frac{1}{(2n)!(2^n)} \] This is because \( 4^n = (2^2)^n = 2^{2n} \). ### Step 3: Use the exponential series Recall the Taylor series expansion for \( e^x \): \[ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \] From this, we can derive that: \[ \cosh(x) = \frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \] If we substitute \( x = \frac{1}{2} \): \[ \cosh\left(\frac{1}{2}\right) = \sum_{n=0}^{\infty} \frac{(1/2)^{2n}}{(2n)!} \] ### Step 4: Relate to our series Notice that our series resembles the series for \( \cosh \): \[ S = 1 + \sum_{n=1}^{\infty} \frac{(1/2)^{2n}}{(2n)!} = 1 + \left(\cosh\left(\frac{1}{2}\right) - 1\right) = \cosh\left(\frac{1}{2}\right) \] ### Step 5: Calculate \( \cosh\left(\frac{1}{2}\right) \) We can calculate \( \cosh\left(\frac{1}{2}\right) \) using the definition: \[ \cosh\left(\frac{1}{2}\right) = \frac{e^{1/2} + e^{-1/2}}{2} \] ### Step 6: Final expression for \( S \) Thus, we have: \[ S = \cosh\left(\frac{1}{2}\right) = \frac{e^{1/2} + e^{-1/2}}{2} \] This can be simplified further: \[ S = \frac{e^{1/2} + \frac{1}{e^{1/2}}}{2} = \frac{e^{1/2} + \frac{1}{e^{1/2}}}{2} = \frac{e^{1/2} + e^{-1/2}}{2} = \frac{e + 1}{2\sqrt{e}} \] ### Final Answer Thus, the sum of the series is: \[ S = \frac{e + 1}{2\sqrt{e}} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE)|7 Videos
  • EXAMINATION PAPER-2014 (IIT-JEE-MAIN)

    ML KHANNA|Exercise Multiple Choice Question |30 Videos
  • FUNCTIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos

Similar Questions

Explore conceptually related problems

The sum of the series 1+ (1)/(4) + (1)/(16) + (1)/(64) + ...........oo is

The sum of the series 1+(1)/(4)_(1)/(16)+(1)/(64)+....oo is

The sum of the series (1)/(2!)+(1)/(4!)+(1)/(6!)+..to infty is

The sum of the series 1+1/(4*2!)+1/(16*4!)+1/(64*6!)+... is