Home
Class 12
MATHS
Prove that : int0^pi (xtanx)/(secxcosecx...

Prove that : `int_0^pi (xtanx)/(secxcosecx)dx =pi^2/4`.

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (SECTION XII MOST IMPORTANT QUESTIONS FOR PRACTICE)|17 Videos
  • DIFFERENTIAL EQUATIONS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE|50 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE (MCQ)|48 Videos

Similar Questions

Explore conceptually related problems

By using the properties of definte, prove that int_(0)^(pi//2)(sinx)/(sinx+cosx)=(pi)/4

Evaluate : int_0^pi (xsinx)/(1+cos^2x)dx .

Prove that following: underset(0)overset(pi)int(xtanx)/(secx+cosx)dx = (pi^2)/(4)

Evaluate the definite integral: int_0^(pi) (xtanx)/(secx+tanx)dx

Prove that int_0^(pi/2) sin2xlogtanxdx=0

Evaluate the following: underset0oversetpi int (xtanx)/(secxcosecx)dx

Prove that : int_(0)^(pi/4)(sqrt(tanx)+sqrt(cotx))dx=sqrt(2).pi/2 .

Evaluate : int_0^(pi/2) x/(sinx+cos x)dx .