Home
Class 11
MATHS
If ((1-asinx)/(1+asinx))sqrt((1+2asinx)/...

If `((1-asinx)/(1+asinx))sqrt((1+2asinx)/(1-2asinx))=1` , is where `a in R` then (a) `x in varphi` (b) `x in R\ AA\ a` (c) `a=0,\ x in R` (d) `a\ in R ,\ x\ in npi,` where `n in I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1 - a \sin x}{1 + a \sin x} \sqrt{\frac{1 + 2a \sin x}{1 - 2a \sin x}} = 1, \] where \( a \in \mathbb{R} \), we will follow these steps: ### Step 1: Rearranging the Equation We start by isolating the square root: \[ \frac{1 - a \sin x}{1 + a \sin x} = \sqrt{\frac{1 + 2a \sin x}{1 - 2a \sin x}}. \] ### Step 2: Squaring Both Sides Next, we square both sides to eliminate the square root: \[ \left(\frac{1 - a \sin x}{1 + a \sin x}\right)^2 = \frac{1 + 2a \sin x}{1 - 2a \sin x}. \] ### Step 3: Expanding Both Sides Expanding the left side using the formula \((\frac{a}{b})^2 = \frac{a^2}{b^2}\): \[ \frac{(1 - a \sin x)^2}{(1 + a \sin x)^2} = \frac{1 + 2a \sin x}{1 - 2a \sin x}. \] ### Step 4: Cross Multiplying Cross-multiplying gives us: \[ (1 - a \sin x)^2 (1 - 2a \sin x) = (1 + 2a \sin x)(1 + a \sin x)^2. \] ### Step 5: Expanding Both Sides Now we expand both sides: Left Side: \[ (1 - 2a \sin x + a^2 \sin^2 x)(1 - 2a \sin x) = 1 - 2a \sin x + a^2 \sin^2 x - 2a \sin x + 4a^2 \sin^2 x - 2a^3 \sin^3 x. \] Right Side: \[ (1 + 2a \sin x)(1 + 2a \sin x + a^2 \sin^2 x) = 1 + 2a \sin x + a^2 \sin^2 x + 2a \sin x + 4a^2 \sin^2 x + 2a^3 \sin^3 x. \] ### Step 6: Simplifying Both Sides After simplification, we equate both sides. This leads to a polynomial equation in terms of \( \sin x \). ### Step 7: Solving for \( \sin x \) We can factor the equation to find the values of \( \sin x \): \[ a^2 \sin^2 x + 4a^2 \sin^2 x - 2a^3 \sin^3 x = 0. \] Factoring out \( \sin x \): \[ \sin x (a^2 + 4a^2 \sin x - 2a^3 \sin^2 x) = 0. \] ### Step 8: Finding Solutions This gives us two cases: 1. \( \sin x = 0 \) 2. The quadratic equation \( a^2 + 4a^2 \sin x - 2a^3 \sin^2 x = 0 \). ### Step 9: Analyzing the Cases - From \( \sin x = 0 \), we find \( x = n\pi \) where \( n \in \mathbb{Z} \). - For \( a = 0 \), any \( x \) is valid. ### Conclusion The valid options are: - (c) \( a = 0, x \in \mathbb{R} \) - (d) \( a \in \mathbb{R}, x \in n\pi \) Thus, the correct answer is option (d).
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|149 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)((acosx-bsinx)/(bcosx+asinx)),w h e r e-pi/2 -1

y=tan^(-1)((acosx-bsinx)/(bcosx+asinx)), where -pi/2ltxltpi and a/btanx gt -1

The function f(x)=(asinx+b cosx)/(c sinx+d cos x) is decreasing, if

If L=lim_(x->0)(sin2x+asinx)/(x^3) is finite, then find the value of a and L

y=tan^(-1)((acosx-bsinx)/(bcosx+asinx)), where -pi/2ltxltpi and a/btanx gt -1 .Find dy/dx

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

f(x)=2x-tan^(-1)x-log{x+sqrt(x^2+1)} is monotonically increasing when (a) x >0 (b) x<0 (c) x in R (d) x in R-{0}

The value of (dI)/(da) when I=int_(0)^(pi//2) log((1+asinx)/(1-asinx)) (dx)/(sinx) (where |a|lt1 ) is

If L= lim_(xto0) (sin2x+asinx)/(x^(3)) is finite, then find the value of a and L.

Statement -1 Domain of f(x) = (1)/(sqrt([x] - x)) is phi . and Statement -2 : [x] le x AA x in R R .

ALLEN-TRIGONOMETRIC EQUATION-All Questions
  1. Given that A ,\ B are positive acute angles and sqrt(3)\ sin2A=sin2B...

    Text Solution

    |

  2. The solution(s) of 4cos^2xsinx-2sin^2x=3sinx is/are npi; n in I (b) n...

    Text Solution

    |

  3. If ((1-asinx)/(1+asinx))sqrt((1+2asinx)/(1-2asinx))=1 , is where a in ...

    Text Solution

    |

  4. The general solution of the following equation : 2(sinx-cos2x)-sin2...

    Text Solution

    |

  5. The value(s) of theta, which satisfy the equation : 2cos^3 3theta+4=...

    Text Solution

    |

  6. If x!=(kpi)/2,\ k in I and (cosx)^( sin^2x-3sinx+2=1 , then all solut...

    Text Solution

    |

  7. Using four values of theta satisfying the equation 8cos^4theta+15cos...

    Text Solution

    |

  8. The solution(s) of the equation cos2x sin6x=cos3x sin5x in the int...

    Text Solution

    |

  9. The equation 4sin^2x-2\ (sqrt(3)+1)sinx+sqrt(3)=0 (a) 2 solution in ...

    Text Solution

    |

  10. If cos^2 2x+2cos^2x=1,\ x in (-pi,pi), then x can take the values : +-...

    Text Solution

    |

  11. The solution(s) of the equation sin7x+cos2x=-2 is/are (a)x=(2kpi)/7+...

    Text Solution

    |

  12. Set of values of x in (-pi,\ pi) for which |4 sinx-1|<sqrt(5) is given...

    Text Solution

    |

  13. Find the principal solutions of the equation sin x = -(√3)/2 .

    Text Solution

    |

  14. 2^1|cosx|+|cosx|^(2 dotx)=4\ \ in\ (-pi,pi)

    Text Solution

    |

  15. The solution of tantheta+tan2theta+tan3theta=tanthetatan2thetatan3thet...

    Text Solution

    |

  16. Find the domain of the following real valued functions of real variab...

    Text Solution

    |

  17. Statement - I : The equation sqrt(3)cosx-sinx=2 has exactly one ...

    Text Solution

    |

  18. Statement - I : General solution of (tan4x-tan2x)/(1+tan4xtan2x)=1\...

    Text Solution

    |

  19. Evaluate the value of sin ((11π)/12).

    Text Solution

    |

  20. Let S1 be the set of all those solutions of the equation (1+a)costhe...

    Text Solution

    |