Home
Class 11
PHYSICS
If the vectors vec a , vec b ,a n d vec...

If the vectors ` vec a , vec b ,a n d vec c` form the sides`B C ,C Aa n dA B ,` respectively, of triangle `A B C ,t h e n` (a)` vec adot vec b+ vec bdot vec c+ vec c dot vec a=0` (b)` vec axx vec b= vec bxx vec c= vec cxx vec a` (c). ` vec adot vec b= vec bdot vec c= vec c dot vec a` (d). ` vec axx vec b+ vec bxx vec c+ vec cxx vec a=0`

A

`vec(a).vec(b)+vec(b).vec(c)+vec(c).vec(a)=0`

B

`vec(a)xxvec(b)=vec(b)xxvec(c)=vec(c)xxvec(a)`

C

`vec(a).vec(b)=vec(b).vec(c)=vec(c).vec(a)`

D

`vec(a)xxvec(b)+vec(b)xxvec(c)+vec(c)xxvec(a)=vec(0)`

Text Solution

Verified by Experts

The correct Answer is:
B

Area of triangle `=1/2 (vec(a)xxvec(b))=1/2(bxxvec(c))=1/2(vec(c)xxvec(a))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise Exercise-03|1 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Exercise-04|1 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Exersice -05(B)|19 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c and vec a is not a zero vector. Show that vec b= vec c dot

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is paralelto vec b- vec c

If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec b+ vec c=0, then find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot

For any three vectors vec a , vec b , vec c , prove that | vec a+ vec b+ vec c|^2=| vec a|^2+| vec b|^2+| vec c|^2+2( vec adot vec b+ vec bdot vec c+ vec cdot vec a)

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec a ,\ vec b ,\ vec c are position vectors of the vertices A ,\ B\ a n d\ C respectively, of a triangle A B C ,\ write the value of vec A B+ vec B C+ vec C Adot