Home
Class 11
PHYSICS
If the position vector of the vertices o...

If the position vector of the vertices of a triangle are `hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k)` & `3hat(i)-hat(j)+2hat(k)`, then find the area of the triangle.

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the given position vectors, we will follow these steps: ### Step 1: Identify the position vectors The position vectors of the vertices of the triangle are given as: - Vertex A: \( \vec{A} = \hat{i} - \hat{j} + 2\hat{k} \) - Vertex B: \( \vec{B} = 2\hat{i} + \hat{j} + \hat{k} \) - Vertex C: \( \vec{C} = 3\hat{i} - \hat{j} + 2\hat{k} \) ### Step 2: Calculate the vectors AB and AC To find the area of the triangle, we first need to find the vectors \( \vec{AB} \) and \( \vec{AC} \). - The vector \( \vec{AB} \) is given by: \[ \vec{AB} = \vec{B} - \vec{A} = (2\hat{i} + \hat{j} + \hat{k}) - (\hat{i} - \hat{j} + 2\hat{k}) \] \[ = (2 - 1)\hat{i} + (1 + 1)\hat{j} + (1 - 2)\hat{k} = \hat{i} + 2\hat{j} - \hat{k} \] - The vector \( \vec{AC} \) is given by: \[ \vec{AC} = \vec{C} - \vec{A} = (3\hat{i} - \hat{j} + 2\hat{k}) - (\hat{i} - \hat{j} + 2\hat{k}) \] \[ = (3 - 1)\hat{i} + (-1 + 1)\hat{j} + (2 - 2)\hat{k} = 2\hat{i} + 0\hat{j} + 0\hat{k} = 2\hat{i} \] ### Step 3: Calculate the cross product \( \vec{AB} \times \vec{AC} \) Now, we will find the cross product of \( \vec{AB} \) and \( \vec{AC} \): \[ \vec{AB} = \hat{i} + 2\hat{j} - \hat{k} \] \[ \vec{AC} = 2\hat{i} \] Using the determinant method: \[ \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -1 \\ 2 & 0 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & -1 \\ 0 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} \] \[ = \hat{i} (2 \cdot 0 - (-1) \cdot 0) - \hat{j} (1 \cdot 0 - (-1) \cdot 2) + \hat{k} (1 \cdot 0 - 2 \cdot 2) \] \[ = 0\hat{i} - 2\hat{j} - 4\hat{k} \] \[ = -2\hat{j} - 4\hat{k} \] ### Step 4: Calculate the magnitude of the cross product Now, we find the magnitude of the cross product: \[ |\vec{AB} \times \vec{AC}| = \sqrt{(-2)^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5} \] ### Step 5: Calculate the area of the triangle The area \( A \) of the triangle is given by: \[ A = \frac{1}{2} |\vec{AB} \times \vec{AC}| = \frac{1}{2} (2\sqrt{5}) = \sqrt{5} \] ### Final Answer The area of the triangle is \( \sqrt{5} \) square units. ---

To find the area of the triangle formed by the given position vectors, we will follow these steps: ### Step 1: Identify the position vectors The position vectors of the vertices of the triangle are given as: - Vertex A: \( \vec{A} = \hat{i} - \hat{j} + 2\hat{k} \) - Vertex B: \( \vec{B} = 2\hat{i} + \hat{j} + \hat{k} \) - Vertex C: \( \vec{C} = 3\hat{i} - \hat{j} + 2\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS

    ALLEN|Exercise EXERCISE-5(A)|15 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Exersice -05(B)|19 Videos
  • MISCELLANEOUS

    ALLEN|Exercise Exercise-04 [A]|28 Videos
  • KINEMATICS (MOTION ALONG A STRAIGHT LINE AND MOTION IN A PLANE)

    ALLEN|Exercise BEGINNER S BOX-7|8 Videos
  • PHYSICAL WORLD, UNITS AND DIMENSIONS & ERRORS IN MEASUREMENT

    ALLEN|Exercise EXERCISE-IV|8 Videos

Similar Questions

Explore conceptually related problems

Vertices of a triangle are given by hat(i)+3hat(j)+2hat(k), 2hat(i)-hat(j)+hat(k) and -hat(i)+2hat(j)+3hat(k) , then area of triangle is (in units)

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) , hat(i) - 3 hat(j) - 5hat(k) and alpha hat(i) - 3 hat(j) + hat(k) respectively are the vertices of a right-anged triangle with /_C = ( pi )/( 2) , then the values of alpha are

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

Find the value of lamda , if the points with position vectors 3hat(i)- 2hat(j)- hat(k), 2hat(i) + 3hat(j)- 4hat(k), -hat(i) + hat(j) + 2hat(k), 4hat(i) + 5hat(j) + lamda hat(k) are coplanar.

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .