Home
Class 12
PHYSICS
If I1/I2 =16 then find the value of (Ima...

If `I_1/I_2` =16 then find the value of `(I_max - I_min)/ (I_max+I_min)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((I_{\text{max}} - I_{\text{min}}) / (I_{\text{max}} + I_{\text{min}})\) given that the ratio \(I_1/I_2 = 16\). ### Step-by-Step Solution: 1. **Identify Given Data**: - We have the ratio \(I_1/I_2 = 16/1\). This means we can set \(I_1 = 16\) and \(I_2 = 1\). 2. **Calculate Maximum Intensity (\(I_{\text{max}}\))**: - The formula for maximum intensity is given by: \[ I_{\text{max}} = (\sqrt{I_1} + \sqrt{I_2})^2 \] - Substitute \(I_1 = 16\) and \(I_2 = 1\): \[ I_{\text{max}} = (\sqrt{16} + \sqrt{1})^2 = (4 + 1)^2 = 5^2 = 25 \] 3. **Calculate Minimum Intensity (\(I_{\text{min}}\))**: - The formula for minimum intensity is given by: \[ I_{\text{min}} = (\sqrt{I_1} - \sqrt{I_2})^2 \] - Substitute \(I_1 = 16\) and \(I_2 = 1\): \[ I_{\text{min}} = (\sqrt{16} - \sqrt{1})^2 = (4 - 1)^2 = 3^2 = 9 \] 4. **Calculate \((I_{\text{max}} - I_{\text{min}}) / (I_{\text{max}} + I_{\text{min}})\)**: - Now we can substitute the values of \(I_{\text{max}}\) and \(I_{\text{min}}\) into the expression: \[ \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \frac{25 - 9}{25 + 9} = \frac{16}{34} \] 5. **Simplify the Result**: - The fraction \(\frac{16}{34}\) can be simplified: \[ \frac{16}{34} = \frac{8}{17} \] ### Final Answer: The value of \((I_{\text{max}} - I_{\text{min}}) / (I_{\text{max}} + I_{\text{min}})\) is \(\frac{8}{17}\).

To solve the problem, we need to find the value of \((I_{\text{max}} - I_{\text{min}}) / (I_{\text{max}} + I_{\text{min}})\) given that the ratio \(I_1/I_2 = 16\). ### Step-by-Step Solution: 1. **Identify Given Data**: - We have the ratio \(I_1/I_2 = 16/1\). This means we can set \(I_1 = 16\) and \(I_2 = 1\). 2. **Calculate Maximum Intensity (\(I_{\text{max}}\))**: ...
Promotional Banner

Topper's Solved these Questions

  • GEOMETRICAL OPTICS

    ALLEN|Exercise EXERCISE-04[A]|23 Videos
  • GEOMETRICAL OPTICS

    ALLEN|Exercise EXERCISE-04[B]|18 Videos
  • GEOMETRICAL OPTICS

    ALLEN|Exercise EXERCISE-2|44 Videos
  • CURRENT ELECTRICITY

    ALLEN|Exercise EX.II|66 Videos
  • GRAVITATION

    ALLEN|Exercise EXERCISE 4|9 Videos

Similar Questions

Explore conceptually related problems

If I_1/I_2 =4 then find the value of (I_max - I_min)/ (I_max+I_min)

If I_1/I_2 =9 then find the value of (I_max - I_min)/ (I_max+I_min) A ̅

If I_1/I_2 =25 then find the value of (I_max - I_min)/ (I_max+I_min)

Two coherent sources of intensity ratio beta^2 interfere. Then, the value of (I_(max)- I_(min))//(I_(max)+I_(min)) is

The interference pattern is obtained with two coherent light sources of intensity ratio n. In the interference patten, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be

The interference pattern is obtained with two coherent light sources of intensity ration n. In the interference pattern, the ratio (I_(max)-I_(min))/(I_(max)+I_(min)) will be

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

Find the value of (1+ i)^(6) + (1-i)^(6)

If the ratio of the intensity of two coherent sources is 4 then the visibility [(I_(max)-I_(min))//(I_(max)+I_(min))] of the fringes is

Two coherent sources of light of intensity ratio beta produce interference pattern. Prove that in the interferencepattern (I_(max) - I_(min))/(I_(max) + (I_(min))) = (2 sqrt beta)/(1 + beta) where I_(max) and I_(min) are maximum and mininum intensities in the resultant wave.