Home
Class 12
CHEMISTRY
How much minimum volume (in ml) of ((5)/...

How much minimum volume (in ml) of `((5)/(51)) M` aluminium sulphate solution should be added to excess calcium nitrate to obtain atleast 1 gm of each salt in the reaction
`Al_(2) (SO_(4))_(3) + 2Ca(NO_(3))_(2) rarr 2Al(NO_(3))_(3) + 3CaSO_(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the minimum volume of a \( \frac{5}{51} \, M \) aluminum sulfate solution required to produce at least 1 gram of each salt in the reaction: \[ \text{Al}_2(\text{SO}_4)_3 + 2 \text{Ca(NO}_3)_2 \rightarrow 2 \text{Al(NO}_3)_3 + 3 \text{CaSO}_4 \] ### Step 1: Calculate the molar masses of the compounds involved. - Molar mass of \( \text{CaSO}_4 \) = 136 g/mol - Molar mass of \( \text{Al}_2(\text{SO}_4)_3 \) = 342 g/mol - Molar mass of \( \text{Ca(NO}_3)_2 \) = 164 g/mol - Molar mass of \( \text{Al(NO}_3)_3 \) = 212.996 g/mol ### Step 2: Calculate the number of moles required for 1 gram of each salt. - For \( \text{CaSO}_4 \): \[ \text{Number of moles} = \frac{1 \, \text{g}}{136 \, \text{g/mol}} = 0.00735 \, \text{mol} \] - For \( \text{Al(NO}_3)_3 \): \[ \text{Number of moles} = \frac{1 \, \text{g}}{212.996 \, \text{g/mol}} = 0.00469 \, \text{mol} \] ### Step 3: Relate the moles of aluminum sulfate to the moles of the products. From the balanced equation, we see that: - 1 mole of \( \text{Al}_2(\text{SO}_4)_3 \) produces 2 moles of \( \text{Al(NO}_3)_3 \) and 3 moles of \( \text{CaSO}_4 \). Thus, the moles of \( \text{Al}_2(\text{SO}_4)_3 \) needed to produce \( 0.00469 \, \text{mol} \) of \( \text{Al(NO}_3)_3 \) is: \[ \text{Moles of } \text{Al}_2(\text{SO}_4)_3 = \frac{0.00469}{2} = 0.002345 \, \text{mol} \] ### Step 4: Calculate the mass of aluminum sulfate required. Now, we can find the mass of \( \text{Al}_2(\text{SO}_4)_3 \): \[ \text{Mass} = \text{Moles} \times \text{Molar mass} = 0.002345 \, \text{mol} \times 342 \, \text{g/mol} = 0.80169 \, \text{g} \] ### Step 5: Calculate the volume of aluminum sulfate solution needed. Using the molarity equation: \[ \text{Molarity} = \frac{\text{Number of moles}}{\text{Volume in L}} \] Rearranging gives: \[ \text{Volume in L} = \frac{\text{Number of moles}}{\text{Molarity}} = \frac{0.002345 \, \text{mol}}{\frac{5}{51} \, M} \] Calculating the volume: \[ \text{Volume in L} = \frac{0.002345}{\frac{5}{51}} = 0.002345 \times \frac{51}{5} = 0.0239 \, \text{L} = 23.9 \, \text{mL} \] ### Final Answer: The minimum volume of \( \frac{5}{51} \, M \) aluminum sulfate solution required is approximately **24 mL**. ---
Promotional Banner

Topper's Solved these Questions

  • CONCENTRATION TERMS

    ALLEN|Exercise Exercise O-I|33 Videos
  • CONCENTRATION TERMS

    ALLEN|Exercise Exercise O-II|23 Videos
  • CONCENTRATION TERMS

    ALLEN|Exercise Exercise S - I|30 Videos
  • ACIDIC STRENGTH & BASIC STRENGTH

    ALLEN|Exercise Exercise V|16 Videos

Similar Questions

Explore conceptually related problems

Al_(2)(SO_(4))_(3) + NH_(4)OH rarr X , X is.

The name of Al_2(SO_4)_3 is :

[Co(NH_(3))_(5)NO_(2)]SO_(4) shows

Ba(NO_(3))_(2)+Na_(2)SO_(4) to BaSO_(4)darr+2NaNO_(3)

Ba(NO_(3))_(2)+Na_(2)SO_(4) to BaSO_(4)darr+2NaNO_(3)

CaSO_(4)+Pb(NO_(3))_(2) to PbSO_(4)darr+Ca(NO_(3))_(2)

CaSO_(4)+Pb(NO_(3))_(2) to PbSO_(4)darr+Ca(NO_(3))_(2)

What is the percentage composition of Al_(2)(SO_(4))_(3)? [R.A.M.: 0 = 16, Al = 27, S = 32.]

Pb(NO_(3))_(2)+H_(2)SO_(4) to PbSO_(4)darr+2HNO_(3)

Pb(NO_(3))_(2)+H_(2)SO_(4) to PbSO_(4)darr+2HNO_(3)