Home
Class 12
MATHS
If (a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2)...

If `(a^(2)+b^(2))^(3) = (a^(3)+b^(3))^(2)` and `ab ne 0` then the numerical value of `(a)/(b)+ (b)/(a)` is equal to-

A

`(3)/(2)`

B

`(2)/(3)`

C

1

D

`(4)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((a^2 + b^2)^3 = (a^3 + b^3)^2\) under the condition that \(ab \neq 0\), we will follow these steps: ### Step 1: Expand both sides using identities We will use the identities for the expansion of cubes and squares: - \((x+y)^2 = x^2 + y^2 + 2xy\) - \((x+y)^3 = x^3 + y^3 + 3xy(x+y)\) For the left-hand side: \[ (a^2 + b^2)^3 = (a^2)^3 + (b^2)^3 + 3(a^2)(b^2)(a^2 + b^2) = a^6 + b^6 + 3a^2b^2(a^2 + b^2) \] For the right-hand side: \[ (a^3 + b^3)^2 = (a^3)^2 + (b^3)^2 + 2(a^3)(b^3) = a^6 + b^6 + 2a^3b^3 \] ### Step 2: Set the expanded forms equal to each other Now we set the two expanded forms equal: \[ a^6 + b^6 + 3a^2b^2(a^2 + b^2) = a^6 + b^6 + 2a^3b^3 \] ### Step 3: Simplify the equation Subtract \(a^6 + b^6\) from both sides: \[ 3a^2b^2(a^2 + b^2) = 2a^3b^3 \] ### Step 4: Factor out common terms Since \(ab \neq 0\), we can divide both sides by \(a^2b^2\): \[ 3(a^2 + b^2) = 2ab \] ### Step 5: Rearrange the equation Rearranging gives: \[ 3a^2 + 3b^2 = 2ab \] ### Step 6: Divide by \(ab\) Now divide the entire equation by \(ab\): \[ \frac{3a^2}{ab} + \frac{3b^2}{ab} = 2 \] This simplifies to: \[ 3\left(\frac{a}{b} + \frac{b}{a}\right) = 2 \] ### Step 7: Solve for \(\frac{a}{b} + \frac{b}{a}\) Now divide both sides by 3: \[ \frac{a}{b} + \frac{b}{a} = \frac{2}{3} \] Thus, the numerical value of \(\frac{a}{b} + \frac{b}{a}\) is \(\frac{2}{3}\). ### Final Answer: \[ \frac{a}{b} + \frac{b}{a} = \frac{2}{3} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is

if A_(1) ,B_(1),C_(1) ……. are respectively the cofactors of the elements a_(1) ,b_(1),c_(1)…… of the determinant Delta = |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}|, Delta ne 0 then the value of |{:(B_(2),,C_(2)),(B_(3),,C_(3)):}| is equal to

Ifa, b, c are positive real number such that ab^(2)c^(3) = 64 then minimum value of ((1)/(a) + (2)/(b) + (3)/(c)) is equal to

Divide : 18a^(3)b^(2) - 27 a^(2)b^(3) +9ab^(2) by 3ab

If (a-b)/(b)=(2)/(3) , what is the value of (a)/(b) ?

If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0) , then the maximum value of b^(2) x^(2) + a^(2) y^(2) + 2ab xy sin theta equals

Simplify : (12ab^(3)-6a^(2)b)/(3ab) (given that ab ne 0 )

If omega ne 1 is a cube root of unity and a+b=21 , a^(3)+b^(3)=105 , then the value of (aomega^(2)+bomega)(aomega+bomega^(2)) is be equal to