Home
Class 12
MATHS
The expression 3(a^2+1)^2+(2(a-1)(a^2+...

The expression `3(a^2+1)^2+(2(a-1)(a^2+1)-5(a-1)^2-4(0.75a^4+3a-1)` when sinplified redues to

A

`2a^(3)-a^(2)`

B

`2a^(2)-a^(3)`

C

`2a^(3)`

D

`2a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 3(a^2 + 1)^2 + 2(a - 1)(a^2 + 1) - 5(a - 1)^2 - 4(0.75a^4 + 3a - 1) \), we will follow these steps: ### Step 1: Expand \( 3(a^2 + 1)^2 \) Using the formula \( (x + y)^2 = x^2 + 2xy + y^2 \): \[ 3(a^2 + 1)^2 = 3(a^4 + 2a^2 + 1) = 3a^4 + 6a^2 + 3 \] ### Step 2: Expand \( 2(a - 1)(a^2 + 1) \) Distributing the terms: \[ 2(a - 1)(a^2 + 1) = 2(a^3 + a - a^2 - 1) = 2a^3 + 2a - 2a^2 - 2 \] ### Step 3: Expand \( -5(a - 1)^2 \) Using the formula \( (x - y)^2 = x^2 - 2xy + y^2 \): \[ -5(a - 1)^2 = -5(a^2 - 2a + 1) = -5a^2 + 10a - 5 \] ### Step 4: Expand \( -4(0.75a^4 + 3a - 1) \) Distributing the \( -4 \): \[ -4(0.75a^4 + 3a - 1) = -3a^4 - 12a + 4 \] ### Step 5: Combine all the expanded terms Now we combine all the terms from Steps 1 to 4: \[ 3a^4 + 6a^2 + 3 + 2a^3 + 2a - 2a^2 - 2 - 5a^2 + 10a - 5 - 3a^4 - 12a + 4 \] ### Step 6: Group like terms Now we will group the terms by their degrees: - \( a^4 \) terms: \( 3a^4 - 3a^4 = 0 \) - \( a^3 \) terms: \( 2a^3 \) - \( a^2 \) terms: \( 6a^2 - 2a^2 - 5a^2 = -a^2 \) - \( a \) terms: \( 2a + 10a - 12a = 0 \) - Constant terms: \( 3 - 2 - 5 + 4 = 0 \) ### Final Result Putting it all together, we have: \[ 2a^3 - a^2 + 0 + 0 = 2a^3 - a^2 \] Thus, the simplified expression is: \[ \boxed{2a^3 - a^2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={0 when pi/4 Ale pi/2 and pi , when 0 le A le pi/4 }

Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA

Find the value of. (i) (3^@+4^(-1)) xx 2^2 (ii) (2^(-1)xx 4^(-1))-: 2^(-1) (iii) (1/2)^-2 + (1/3)^-2 + (1/4)^-2 (iv) (3^-1 + 4^-1+ 5^(-1))^0 (v) {((-2)/3)^-2}^2

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

Express each of the following as a rational number of the form p/q : (i) (2^(-1)+3^(-1))^2 (ii) (2^(-1)-4^(-1))^2 ] (iii) {(3/4)^(-1)-(1/4)^(-1)}^(-1)

Express the matrix [3-2-4 3-2-5-1 1 2] as the sum of a symmetric and skew-symmetric matrix.