Home
Class 12
MATHS
The expression sqrt(12+6sqrt(3))+sqrt(12...

The expression `sqrt(12+6sqrt(3))+sqrt(12-6sqrt(3))` simplifies to

A

4

B

`2sqrt(3)`

C

`3sqrt(3)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sqrt{12 + 6\sqrt{3}} + \sqrt{12 - 6\sqrt{3}} \), we can follow these steps: ### Step 1: Rewrite the terms under the square roots We start by rewriting \( 12 \) as \( 9 + 3 \) in both square roots: \[ \sqrt{12 + 6\sqrt{3}} = \sqrt{9 + 3 + 6\sqrt{3}} = \sqrt{(3 + \sqrt{3})^2} \] \[ \sqrt{12 - 6\sqrt{3}} = \sqrt{9 + 3 - 6\sqrt{3}} = \sqrt{(3 - \sqrt{3})^2} \] ### Step 2: Apply the square root Now we can take the square roots: \[ \sqrt{(3 + \sqrt{3})^2} = 3 + \sqrt{3} \] \[ \sqrt{(3 - \sqrt{3})^2} = 3 - \sqrt{3} \] ### Step 3: Combine the results Now we combine the results from the two square roots: \[ \sqrt{12 + 6\sqrt{3}} + \sqrt{12 - 6\sqrt{3}} = (3 + \sqrt{3}) + (3 - \sqrt{3}) \] ### Step 4: Simplify the expression When we combine the two expressions, the \( \sqrt{3} \) terms cancel out: \[ (3 + \sqrt{3}) + (3 - \sqrt{3}) = 3 + 3 = 6 \] ### Final Result Thus, the simplified expression is: \[ \sqrt{12 + 6\sqrt{3}} + \sqrt{12 - 6\sqrt{3}} = 6 \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The expression sqrt(6+2sqrt3+2sqrt2+2sqrt6)-sqrt(3-2sqrt2) simplifies to :-

10sqrt(12) -: 2sqrt(3)

Simplify: (2sqrt(2)+sqrt(3))/(2sqrt(2)-sqrt(3))

Simplify sqrt(5+2sqrt(6))+sqrt(8-2sqrt(15))

Simplify (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) e

sqrt(21-4sqrt5+8sqrt3-4sqrt12)=

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

Simplify the following expressions: (i) (3+sqrt(3))\ (3-sqrt(3)) (ii) (sqrt(5)-\ sqrt(2)\ )(sqrt(5)+sqrt(2))

Simplify the following expressions: (i)\ (sqrt(3)+\ sqrt(7))^2 (ii)\ (sqrt(5)-sqrt(3))^2 (iii)\ (2sqrt(5)+3sqrt(2))^2

Simplify : sqrt(3+2sqrt(2))