Home
Class 12
MATHS
Evaluate: log(9)27 - log(27)9...

Evaluate: `log_(9)27 - log_(27)9`

A

0

B

`(3)/(2)`

C

`(5)/(6)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \log_{9}27 - \log_{27}9 \), we will follow these steps: ### Step 1: Rewrite the logarithms in terms of base 3. We know that: - \( 9 = 3^2 \) - \( 27 = 3^3 \) Thus, we can rewrite the logarithms: \[ \log_{9}27 = \log_{3^2}3^3 \] \[ \log_{27}9 = \log_{3^3}3^2 \] ### Step 2: Use the change of base formula. Using the change of base formula, we can express these logarithms as: \[ \log_{a^b}c^d = \frac{d}{b} \log_{a}c \] Applying this to our expressions: \[ \log_{9}27 = \frac{3}{2} \log_{3}3 \] \[ \log_{27}9 = \frac{2}{3} \log_{3}3 \] ### Step 3: Simplify the logarithms. Since \( \log_{3}3 = 1 \), we can simplify: \[ \log_{9}27 = \frac{3}{2} \cdot 1 = \frac{3}{2} \] \[ \log_{27}9 = \frac{2}{3} \cdot 1 = \frac{2}{3} \] ### Step 4: Substitute back into the original expression. Now we substitute these values back into the expression: \[ \log_{9}27 - \log_{27}9 = \frac{3}{2} - \frac{2}{3} \] ### Step 5: Find a common denominator and simplify. The common denominator for \( \frac{3}{2} \) and \( \frac{2}{3} \) is 6. We convert both fractions: \[ \frac{3}{2} = \frac{3 \times 3}{2 \times 3} = \frac{9}{6} \] \[ \frac{2}{3} = \frac{2 \times 2}{3 \times 2} = \frac{4}{6} \] Now we can subtract: \[ \frac{9}{6} - \frac{4}{6} = \frac{9 - 4}{6} = \frac{5}{6} \] ### Final Answer: Thus, the value of \( \log_{9}27 - \log_{27}9 \) is: \[ \frac{5}{6} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

log_(7)9=

Evaluate : (i) log_(b)a xx log_(c)b xx log_(a)c (ii) log_(3) 8 div log_(9) 16 (iii) (log_(5)8)/(log_(25)16 xx log_(100)10)

Evaluate : (i) log_(125) 625 - log_(16) 64 (ii) log_(16) 32 - log_(25) 125 + log_(9) 27 .

Evaluate : (log8 xx log9)/(log 27)

The value of log_(3) e- log_(9) e + log_(27) e- log_(81) e+…infty is

Evaluate : (log 27)/( log sqrt3)

Evaluate: Log_9tan(pi/6)

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..