Home
Class 12
MATHS
If log(sqrt(2)) sqrt(x) +log(2)(x) + log...

If `log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40` then x is equal to-

A

8

B

16

C

32

D

256

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \log_{\sqrt{2}} \sqrt{x} + \log_{2}(x) + \log_{4}(x^{2}) + \log_{8}(x^{3}) + \log_{16}(x^{4}) = 40, \] we will simplify each logarithmic term step by step. ### Step 1: Simplify each logarithmic term 1. **First term:** \[ \log_{\sqrt{2}} \sqrt{x} = \log_{2^{1/2}} x^{1/2} = \frac{1/2 \log_{2} x}{1/2} = \log_{2} x. \] 2. **Second term:** \[ \log_{2}(x) \text{ remains as it is.} \] 3. **Third term:** \[ \log_{4}(x^{2}) = \log_{2^{2}}(x^{2}) = \frac{2 \log_{2} x}{2} = \log_{2} x. \] 4. **Fourth term:** \[ \log_{8}(x^{3}) = \log_{2^{3}}(x^{3}) = \frac{3 \log_{2} x}{3} = \log_{2} x. \] 5. **Fifth term:** \[ \log_{16}(x^{4}) = \log_{2^{4}}(x^{4}) = \frac{4 \log_{2} x}{4} = \log_{2} x. \] ### Step 2: Combine the simplified terms Now we can combine all the simplified terms: \[ \log_{2} x + \log_{2} x + \log_{2} x + \log_{2} x + \log_{2} x = 5 \log_{2} x. \] ### Step 3: Set the equation equal to 40 Now we have: \[ 5 \log_{2} x = 40. \] ### Step 4: Solve for \(\log_{2} x\) Dividing both sides by 5: \[ \log_{2} x = \frac{40}{5} = 8. \] ### Step 5: Convert logarithmic form to exponential form Using the property of logarithms, we can convert this to: \[ x = 2^{8}. \] ### Step 6: Calculate the value of \(x\) Calculating \(2^{8}\): \[ x = 256. \] ### Final Answer Thus, the value of \(x\) is \[ \boxed{256}. \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If log_(sqrt(27))x = 2 (2)/(3) , find x.

Solve log_(4)(x-1)= log_(2) (x-3) .

If 2x^(log_(4)3)+3^(log_(4)x)= 27 , then x is equal to

If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

If "log"_(2)x + "log"_(4)x + "log"_(16)x = (21)/(4) , then x equals to

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

Solve : (3)/(2)log_(4)(x+2)^(2)+3=log_(4)(4-x)^(3)+log_(4)(6+x)^(3) .

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals