Home
Class 12
MATHS
If x=sqrt(2+sqrt(2+sqrt(2+........oo))) ...

If `x=sqrt(2+sqrt(2+sqrt(2+........oo)))` and `y=sqrt(2sqrt(2sqrt(2........oo)))` find `x-y`

A

`2x = y`

B

`3x lt y`

C

`4x = 5y`

D

`x = y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) defined as follows: 1. \( x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \ldots}}} \) 2. \( y = \sqrt{2 \cdot \sqrt{2 \cdot \sqrt{2 \cdots}}} \) ### Step 1: Solve for \( x \) We start with the equation for \( x \): \[ x = \sqrt{2 + x} \] Next, we square both sides to eliminate the square root: \[ x^2 = 2 + x \] Rearranging this gives us a quadratic equation: \[ x^2 - x - 2 = 0 \] ### Step 2: Factor the quadratic equation To solve the quadratic equation, we can factor it: \[ (x - 2)(x + 1) = 0 \] Setting each factor to zero gives us: \[ x - 2 = 0 \quad \text{or} \quad x + 1 = 0 \] Thus, we find: \[ x = 2 \quad \text{or} \quad x = -1 \] Since \( x \) must be positive (as it is defined as a square root), we have: \[ x = 2 \] ### Step 3: Solve for \( y \) Now, we consider \( y \): \[ y = \sqrt{2 \cdot y} \] Squaring both sides gives: \[ y^2 = 2y \] Rearranging this gives us: \[ y^2 - 2y = 0 \] Factoring out \( y \): \[ y(y - 2) = 0 \] Setting each factor to zero gives: \[ y = 0 \quad \text{or} \quad y = 2 \] Since \( y \) must also be positive, we have: \[ y = 2 \] ### Step 4: Calculate \( x - y \) Now we can find \( x - y \): \[ x - y = 2 - 2 = 0 \] ### Final Answer Thus, the value of \( x - y \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If y=sqrt(x+sqrt(x+sqrt(x......... oo ))) then dy/dx

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

evaluate sqrt(-2+2sqrt(-2+2sqrt(-2+..............oo))

If x=(sqrt(3)-\ sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+\ sqrt(2))/(sqrt(3)-\ sqrt(2)) , then x^2+\ x y+y^2= (a) 101 (b) 99 (c) 98 (d) 102

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : y^(2)

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : x^(2)

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : xy

Y=log(4/(sqrt(x+2)+sqrt(2-x)))