Home
Class 12
MATHS
{:(Column -I,Column -II),((A)"if" 4^(x)-...

`{:(Column -I,Column -II),((A)"if" 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)"then 2x equals",(P)1),((B)"The number of solutions of" log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0 is,(Q)2),((C)"The number of values of x such that the middle term of",(R)3),(log_(2)2 log_(3)(2^(x)-5)log_(3)(2^(x)-(7)/(2))"is the average of the other two is",),((D)"if" alphabeta "are the roots of the equation",(S)4),(x^(2)-(3+2^(sqrt(log_(2)3)-3sqrt(log_(3)2)))x-2(3log_(3)^(2)-2^(log_(2)^(3)))=0,),("then" 2(alpha+beta)-alpha beta"equals",):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to analyze the given equations and find the required values step by step. ### Step-by-step Solution: 1. **Understanding the Equation**: We are given the equation \(2a^2 + 3b^2 = 35\), where \(a\) and \(b\) are integers (denoted by \(Z\)). 2. **Rearranging the Equation**: We can rearrange the equation to find possible values of \(a\) and \(b\): \[ 3b^2 = 35 - 2a^2 \] This implies that \(35 - 2a^2\) must be non-negative and divisible by 3. 3. **Finding Possible Values for \(a\)**: We can find values of \(a\) such that \(2a^2 \leq 35\): \[ a^2 \leq \frac{35}{2} \approx 17.5 \] Thus, \(a\) can take integer values from \(-4\) to \(4\) (since \(4^2 = 16\) and \(5^2 = 25\) exceeds \(17.5\)). 4. **Calculating Corresponding \(b\) Values**: We will substitute integer values of \(a\) from \(-4\) to \(4\) into the equation and check for valid integer \(b\) values: - For \(a = -4\): \[ 2(-4)^2 + 3b^2 = 35 \implies 32 + 3b^2 = 35 \implies 3b^2 = 3 \implies b^2 = 1 \implies b = \pm 1 \] - For \(a = -3\): \[ 2(-3)^2 + 3b^2 = 35 \implies 18 + 3b^2 = 35 \implies 3b^2 = 17 \implies b^2 \text{ not an integer} \] - For \(a = -2\): \[ 2(-2)^2 + 3b^2 = 35 \implies 8 + 3b^2 = 35 \implies 3b^2 = 27 \implies b^2 = 9 \implies b = \pm 3 \] - For \(a = -1\): \[ 2(-1)^2 + 3b^2 = 35 \implies 2 + 3b^2 = 35 \implies 3b^2 = 33 \implies b^2 \text{ not an integer} \] - For \(a = 0\): \[ 2(0)^2 + 3b^2 = 35 \implies 3b^2 = 35 \implies b^2 \text{ not an integer} \] - For \(a = 1\): \[ 2(1)^2 + 3b^2 = 35 \implies 2 + 3b^2 = 35 \implies 3b^2 = 33 \implies b^2 \text{ not an integer} \] - For \(a = 2\): \[ 2(2)^2 + 3b^2 = 35 \implies 8 + 3b^2 = 35 \implies 3b^2 = 27 \implies b^2 = 9 \implies b = \pm 3 \] - For \(a = 3\): \[ 2(3)^2 + 3b^2 = 35 \implies 18 + 3b^2 = 35 \implies 3b^2 = 17 \implies b^2 \text{ not an integer} \] - For \(a = 4\): \[ 2(4)^2 + 3b^2 = 35 \implies 32 + 3b^2 = 35 \implies 3b^2 = 3 \implies b^2 = 1 \implies b = \pm 1 \] 5. **Listing All Valid \((a, b)\) Pairs**: From the calculations, we have the following valid pairs: - For \(a = -4\): \((-4, 1)\), \((-4, -1)\) - For \(a = -2\): \((-2, 3)\), \((-2, -3)\) - For \(a = 2\): \((2, 3)\), \((2, -3)\) - For \(a = 4\): \((4, 1)\), \((4, -1)\) 6. **Counting the Solutions**: The valid pairs are: - \((-4, 1)\) - \((-4, -1)\) - \((-2, 3)\) - \((-2, -3)\) - \((2, 3)\) - \((2, -3)\) - \((4, 1)\) - \((4, -1)\) This gives us a total of 8 valid pairs. ### Final Answer: Thus, the total number of integer solutions \((a, b)\) is **8**.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If alpha, beta ar the roots of the quadratic equation x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, then the value of alpha ^(2) + alpha beta is equal to :

If alpha, beta ar the roots of the quadratic equation x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, then the value of alpha ^(2) + alpha beta +beta^2 is equal to :

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

The number of solutions of the equation log_(3)(3+sqrt(x))+log_(3)(1+x^(2))=0 , is

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

Solve log_(2)((4)/(x+3))>log_(2)(2-x)

Solve the equation: 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)

The number of value(s) of x satisfying 1-log_(3)(x+1)^(2)=1/2log_(sqrt(3))((x+5)/(x+3)) is

Solve the equation: log_(2x+3)x^(2) lt log_(2x)(2x+3)