Home
Class 12
MATHS
Lat x=2^((log(2)3) (log(3) 4)....), wher...

Lat `x=2^((log_(2)3) (log_(3) 4)....)`, where the last term in exponent is `log_(99) 100`, then the value of `cos ((xpi)/4)+sin ((x pi)/4)` is equal to -

A

`1`

B

`1/sqrt(2)`

C

`sqrt(2)`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the expression given for \( x \): ### Step 1: Define the expression for \( x \) We have: \[ x = 2^{(\log_2 3)(\log_3 4)(\log_4 5) \ldots (\log_{99} 100)} \] ### Step 2: Rewrite the logarithmic terms Using the change of base formula for logarithms, we can express each term as: \[ \log_a b = \frac{\log b}{\log a} \] Thus, we can rewrite \( x \) as: \[ x = 2^{\left(\frac{\log 3}{\log 2}\right) \left(\frac{\log 4}{\log 3}\right) \left(\frac{\log 5}{\log 4}\right) \ldots \left(\frac{\log 100}{\log 99}\right)} \] ### Step 3: Simplify the product of logarithms Notice that in the product, all intermediate terms will cancel out: \[ x = 2^{\frac{\log 100}{\log 2}} \] This is because all the logs in the numerator and denominator cancel each other out. ### Step 4: Simplify further Now we can simplify \( x \): \[ x = 2^{\log_2 100} \] Using the property of logarithms, we know that \( a^{\log_a b} = b \). Therefore: \[ x = 100 \] ### Step 5: Substitute \( x \) into the expression Now we need to find the value of: \[ \cos\left(\frac{x \pi}{4}\right) + \sin\left(\frac{x \pi}{4}\right) \] Substituting \( x = 100 \): \[ \cos\left(\frac{100 \pi}{4}\right) + \sin\left(\frac{100 \pi}{4}\right) = \cos(25\pi) + \sin(25\pi) \] ### Step 6: Evaluate \( \cos(25\pi) \) and \( \sin(25\pi) \) We know that: - \( \cos(25\pi) = -1 \) (since \( 25 \) is an odd integer) - \( \sin(25\pi) = 0 \) ### Step 7: Combine the results Thus: \[ \cos(25\pi) + \sin(25\pi) = -1 + 0 = -1 \] ### Final Answer The value of \( \cos\left(\frac{x \pi}{4}\right) + \sin\left(\frac{x \pi}{4}\right) \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If 2x^(log_(4)3)+3^(log_(4)x)= 27 , then x is equal to

Solve x^(log_(4) x)=2^(3(log_(4)x+3) .

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

The value of log_4[|log_2{log_2(log_3)81)}] is equal to

If x=-2 , then the value of "log"_(4)((x^(2))/(4)) -2 "log"_(4)(4x^(4)), is

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

The value of int_(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx , is

Given that N=7^(log_(49),900),A=2^(log_(2)4)+3^(log_(2)4)-4^(log_(2)2),D=(log_(5)49)(log_(7)125) Then answer the following questions : (Using the values of N, A, D) If log_(A)D=a, then the value of log_(6)12 is (in terms of a)

If 2x^((log)_4 3)+3^((log)_4x)=27 , then x is equal to

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.