Home
Class 12
MATHS
The value of the expression log(10) (tan...

The value of the expression `log_(10) (tan 6^(@))+log_(10) (tan 12^(@))+log_(10) (tan 18^(@))+...+log_(10)(tan 84^(@))` is -

A

a whole number

B

an irrational number

C

a negative integer

D

a rationa number which is not an integer

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \log_{10}(\tan 6^\circ) + \log_{10}(\tan 12^\circ) + \log_{10}(\tan 18^\circ) + \ldots + \log_{10}(\tan 84^\circ), \] we can use the properties of logarithms and trigonometric identities. ### Step 1: Use the property of logarithms Using the property of logarithms that states \(\log_a b + \log_a c = \log_a(b \cdot c)\), we can combine the logarithmic terms: \[ \log_{10}(\tan 6^\circ \cdot \tan 12^\circ \cdot \tan 18^\circ \cdots \tan 84^\circ). \] ### Step 2: Identify the pairs of angles Next, we can pair the terms in the product. Notice that: \[ \tan(90^\circ - \theta) = \cot(\theta). \] Thus, we can pair the angles: - \(\tan 6^\circ\) pairs with \(\tan 84^\circ\) (since \(\tan 84^\circ = \cot 6^\circ\)), - \(\tan 12^\circ\) pairs with \(\tan 78^\circ\) (since \(\tan 78^\circ = \cot 12^\circ\)), - \(\tan 18^\circ\) pairs with \(\tan 72^\circ\) (since \(\tan 72^\circ = \cot 18^\circ\)), - \(\tan 24^\circ\) pairs with \(\tan 66^\circ\) (since \(\tan 66^\circ = \cot 24^\circ\)), - \(\tan 30^\circ\) pairs with \(\tan 60^\circ\) (since \(\tan 60^\circ = \cot 30^\circ\)), - \(\tan 36^\circ\) pairs with \(\tan 54^\circ\) (since \(\tan 54^\circ = \cot 36^\circ\)), - \(\tan 42^\circ\) pairs with \(\tan 48^\circ\) (since \(\tan 48^\circ = \cot 42^\circ\)). ### Step 3: Simplify the product Each pair of terms can be simplified: \[ \tan \theta \cdot \cot \theta = 1. \] Thus, each of the pairs contributes a product of 1: \[ \tan 6^\circ \cdot \tan 84^\circ = 1, \] \[ \tan 12^\circ \cdot \tan 78^\circ = 1, \] \[ \tan 18^\circ \cdot \tan 72^\circ = 1, \] \[ \tan 24^\circ \cdot \tan 66^\circ = 1, \] \[ \tan 30^\circ \cdot \tan 60^\circ = 1, \] \[ \tan 36^\circ \cdot \tan 54^\circ = 1, \] \[ \tan 42^\circ \cdot \tan 48^\circ = 1. \] ### Step 4: Count the pairs There are 7 pairs, and since each pair equals 1, the product of all terms is: \[ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1. \] ### Step 5: Apply the logarithm Now we substitute back into the logarithm: \[ \log_{10}(1) = 0. \] ### Conclusion Thus, the value of the original expression is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The value of the expression log_10(tan6^@)+log_10(tan12^@)+log_10(tan18^@)+...+log_10(tan84^@) is

log_(10)tan 1^(@)+log_(10)tan2^(@)+…..+log_(10)tan89^(@) is equal to :

If log_(10)5=a and log_(10)3=b ,then

the value of e^(log_(10)tan1^@+log_(10)tan2^@+log_(10)tan3^@....+log_(10)tan89^@

Express log_(10) root(5)(108) in term of log_(10)2 and log_(10)3 .

Find the value of log tan 1^(@) logtan 2^(@) … log tan 89^(@) .

Find the value of the following log_(cot30^@)tan45^@

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

Express log_(10)2 + 1 in the form of log_(10)x .

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.