Home
Class 12
MATHS
f(x)=(1/sqrt(b-a))(((sqrt((b-a)/a))sin2x...

` f(x)=(1/sqrt(b-a))(((sqrt((b-a)/a))sin2x)/sqrt(1+((sqrt(b-a)/a))sinx)^2)(sqrt(a+btan^2x)` at `x=3pi/4`

A

`sqrt(2)`

B

`-sqrt(2)`

C

`1`

D

non existent

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given function \( f(x) = \frac{1}{\sqrt{b-a}} \left( \frac{\sqrt{\frac{b-a}{a}} \sin 2x}{\sqrt{1 + \left( \sqrt{\frac{b-a}{a}} \sin x \right)^2}} \right) \sqrt{a + b \tan^2 x} \) at \( x = \frac{3\pi}{4} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{3\pi}{4} \) First, we need to evaluate \( \sin 2x \) and \( \tan^2 x \) at \( x = \frac{3\pi}{4} \). \[ \sin 2x = \sin\left(2 \cdot \frac{3\pi}{4}\right) = \sin\left(\frac{3\pi}{2}\right) = -1 \] \[ \tan x = \tan\left(\frac{3\pi}{4}\right) = -1 \quad \Rightarrow \quad \tan^2 x = 1 \] ### Step 2: Substitute values into the function Now substitute these values into the function \( f(x) \): \[ f\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{b-a}} \left( \frac{\sqrt{\frac{b-a}{a}} \cdot (-1)}{\sqrt{1 + \left( \sqrt{\frac{b-a}{a}} \cdot (-1) \right)^2}} \right) \sqrt{a + b \cdot 1} \] ### Step 3: Simplify the expression Now simplify the expression: 1. The numerator becomes: \[ -\sqrt{\frac{b-a}{a}} \] 2. The denominator becomes: \[ \sqrt{1 + \left( \sqrt{\frac{b-a}{a}} \right)^2} = \sqrt{1 + \frac{b-a}{a}} = \sqrt{\frac{a + b}{a}} = \frac{\sqrt{a + b}}{\sqrt{a}} \] Thus, the function simplifies to: \[ f\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{b-a}} \cdot \frac{-\sqrt{\frac{b-a}{a}}}{\frac{\sqrt{a + b}}{\sqrt{a}}} \cdot \sqrt{a + b} \] ### Step 4: Final simplification Now, we can simplify further: \[ f\left(\frac{3\pi}{4}\right) = \frac{-\sqrt{b-a}}{\sqrt{a} \sqrt{b-a}} \cdot \sqrt{a + b} = \frac{-\sqrt{a + b}}{\sqrt{a}} \] ### Final Result Thus, the final result for \( f\left(\frac{3\pi}{4}\right) \) is: \[ f\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{a + b}}{\sqrt{a}} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2, x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

If f(x)=(1)/(sqrt(x+2sqrt(2x-4)))+(1)/(sqrt(x-2sqrt(2x-4))) for xgt2 then find f(11).

The derivative of f(x)=cos^(-1)((1)/(sqrt3)(2cosx-3sinx))+{sin^(-1)((1)/(sqrt3)(2cosx+3sinx))} w.r.t. sqrt(1+x^(2)) at x=(1)/(sqrt3) is.........

If I=int(sinx+sin^3x)/(cos2x)dx=Pcosx+Qlog|f(x)|+R , then (a) P=1/2,Q=-3/(4sqrt(2)) (b) P=1/4, Q=1/(sqrt(2)) (c) f(x)=(sqrt(2)cosx+1)/(sqrt(2)cosx-1) (d) f(x)=(sqrt(2)cosx-1)/(sqrt(2)cosx+1)

lim_(x->0)(x+2sinx)/(sqrt(x^2+2sinx+1)-sqrt(sin^2x-x+1))

lim_(xrarr0) (sqrt(x+1)+sqrt(x+4)-3)/(sqrt(x+2)-sqrt2)