Home
Class 12
MATHS
Let y=(2^(log(2^(1//4))x)-3^(log(27) (x^...

Let `y=(2^(log_(2^(1//4))x)-3^(log_(27) (x^(2)+1)^(3))-2x)/(7^(4 log_(4 9)x)-x-1)` and `(dy)/(dx)=ax+b`, the ordered pair (a, b) is

A

(2, 1)

B

(1, 2)

C

(-1, 2)

D

(2, -1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression for \( y \) and then differentiate it to find \( \frac{dy}{dx} \). Let's break it down step by step. ### Step 1: Simplifying the expression for \( y \) Given: \[ y = \frac{2^{\log_{2^{1/4}} x} - 3^{\log_{27} (x^2 + 1)^3} - 2x}{7^{4 \log_{49} x} - x - 1} \] **Numerator:** 1. **First term:** \( 2^{\log_{2^{1/4}} x} \) - Using the change of base formula: \[ \log_{2^{1/4}} x = \frac{\log_2 x}{\log_2 (2^{1/4})} = \frac{\log_2 x}{1/4} = 4 \log_2 x \] - Thus, \[ 2^{\log_{2^{1/4}} x} = 2^{4 \log_2 x} = x^4 \] 2. **Second term:** \( 3^{\log_{27} (x^2 + 1)^3} \) - Since \( 27 = 3^3 \): \[ \log_{27} (x^2 + 1)^3 = \frac{3 \log_3 (x^2 + 1)}{3} = \log_3 (x^2 + 1) \] - Thus, \[ 3^{\log_{27} (x^2 + 1)^3} = (x^2 + 1) \] 3. **Combining the numerator:** \[ \text{Numerator} = x^4 - (x^2 + 1) - 2x = x^4 - x^2 - 2x - 1 \] **Denominator:** 1. **Denominator:** \( 7^{4 \log_{49} x} \) - Since \( 49 = 7^2 \): \[ \log_{49} x = \frac{\log_7 x}{\log_7 (7^2)} = \frac{\log_7 x}{2} \] - Thus, \[ 7^{4 \log_{49} x} = 7^{4 \cdot \frac{\log_7 x}{2}} = 7^{2 \log_7 x} = x^2 \] 2. **Combining the denominator:** \[ \text{Denominator} = x^2 - x - 1 \] ### Step 2: Final expression for \( y \) Putting it all together: \[ y = \frac{x^4 - x^2 - 2x - 1}{x^2 - x - 1} \] ### Step 3: Differentiating \( y \) Using the quotient rule: \[ \frac{dy}{dx} = \frac{(u'v - uv')}{v^2} \] where \( u = x^4 - x^2 - 2x - 1 \) and \( v = x^2 - x - 1 \). 1. **Finding \( u' \):** \[ u' = 4x^3 - 2x - 2 \] 2. **Finding \( v' \):** \[ v' = 2x - 1 \] 3. **Applying the quotient rule:** \[ \frac{dy}{dx} = \frac{(4x^3 - 2x - 2)(x^2 - x - 1) - (x^4 - x^2 - 2x - 1)(2x - 1)}{(x^2 - x - 1)^2} \] ### Step 4: Simplifying \( \frac{dy}{dx} \) After simplification, we find that: \[ \frac{dy}{dx} = ax + b \] where \( a = 2 \) and \( b = 1 \). ### Final Answer The ordered pair \( (a, b) \) is: \[ \boxed{(2, 1)} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Prove that (2^(log_(2^(1//4))x)-3^(log_(27)(x^(2)+1)^(3))-2x)/(7^(4log_(49)x)-x-1)gt0,AAx in(0,oo) .

Prove that (2^((log)_2 1/4x)-3^((log)_(27)(x^2+1)^3)-2x) /(7^(4(log)_(49)x)-x-1)>0

Let y=(2^((log)_2 1/4x)-3^((log)_(27) (x^2+1)^3-2x))/(7^(4(log)_(49)x)-x-1)a n d(dy)/(dx)=a x+b , then the value of a+b is_______.

Solve log_(4)(x-1)= log_(2) (x-3) .

Solve log_(2)((4)/(x+3))>log_(2)(2-x)

Solve 4^(log_(9)x)-6x^(log_(9)2)+2^(log_(3)27)=0 .

Let P=(5)/((1)/(log_(2)x)+(1)/(log_(3)x)+(1)/(log_(4)x)+(1)/(log_(5)x))and (120)^(P)=32 , then the value of x be :

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

Solve log_(2)(4xx3^(x)-6)-log_(2)(9^(x)-6)=1 .

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .