Home
Class 12
MATHS
2(sin^6theta+cos^6theta)-3(sin^4theta+co...

`2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)` is equal to `0` (b) `1` (c) `-1` (d) None of these

A

2

B

0

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2(\sin^6 \theta + \cos^6 \theta) - 3(\sin^4 \theta + \cos^4 \theta)\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ 2(\sin^6 \theta + \cos^6 \theta) - 3(\sin^4 \theta + \cos^4 \theta) \] ### Step 2: Use the identity for \(a^3 + b^3\) Recall that \(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\). Here, let \(a = \sin^2 \theta\) and \(b = \cos^2 \theta\). Therefore, we can write: \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ \sin^6 \theta + \cos^6 \theta = \sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta \] ### Step 3: Substitute back into the expression Now substituting this back into the original expression: \[ 2(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) - 3(\sin^4 \theta + \cos^4 \theta) \] ### Step 4: Simplify the expression Distributing the 2: \[ 2\sin^4 \theta - 2\sin^2 \theta \cos^2 \theta + 2\cos^4 \theta - 3\sin^4 \theta - 3\cos^4 \theta \] Combine like terms: \[ (2\sin^4 \theta - 3\sin^4 \theta) + (2\cos^4 \theta - 3\cos^4 \theta) - 2\sin^2 \theta \cos^2 \theta \] This simplifies to: \[ -\sin^4 \theta - \cos^4 \theta - 2\sin^2 \theta \cos^2 \theta \] ### Step 5: Use the identity for \(a^4 + b^4\) Recall that \(a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2\). Here, we have: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta \] Since \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] ### Step 6: Substitute this back into the expression Now substituting this back: \[ -(1 - 2\sin^2 \theta \cos^2 \theta) - 2\sin^2 \theta \cos^2 \theta \] This simplifies to: \[ -1 + 2\sin^2 \theta \cos^2 \theta - 2\sin^2 \theta \cos^2 \theta \] The \(2\sin^2 \theta \cos^2 \theta\) terms cancel out: \[ -1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) is equal to (a) 0 (b) 1 (c) -1 (d) None of these

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

cos^(4)theta-sin^(4)theta is equal to

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

int_0^(pi/4) (2sinthetacostheta)/(sin^4theta+cos^4theta)d theta

3(sintheta-costheta)^4+6(sintheta+costheta)^2+4(sin^6theta+cos^6theta) is equal to 11 (b) 12 (c) 13 (d) 14

sin^6theta+cos^6theta\ \ for all theta

If sin^6 theta + cos^6 theta + k sin^2 2theta =1 , then k is equal to :