Home
Class 12
MATHS
cos^2 48^0-sin^2 12^0 is equal to...

`cos^2 48^0-sin^2 12^0` is equal to

A

`(sqrt(5)-1)/(4)`

B

`(sqrt(5)+1)/(8 )`

C

`(sqrt(3)-1)/(4)`

D

`(sqrt(3)+1)/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^2 48^\circ - \sin^2 12^\circ \), we can use the trigonometric identity for the difference of squares. ### Step-by-Step Solution: 1. **Identify the Formula**: We will use the identity: \[ \cos^2 A - \sin^2 B = \cos(A + B) \cos(A - B) \] where \( A = 48^\circ \) and \( B = 12^\circ \). 2. **Apply the Formula**: Substitute \( A \) and \( B \) into the formula: \[ \cos^2 48^\circ - \sin^2 12^\circ = \cos(48^\circ + 12^\circ) \cos(48^\circ - 12^\circ) \] 3. **Calculate the Angles**: Now, calculate \( A + B \) and \( A - B \): \[ 48^\circ + 12^\circ = 60^\circ \] \[ 48^\circ - 12^\circ = 36^\circ \] 4. **Substitute the Values**: Now substitute these values back into the equation: \[ \cos^2 48^\circ - \sin^2 12^\circ = \cos(60^\circ) \cos(36^\circ) \] 5. **Evaluate the Cosine Values**: We know that: \[ \cos(60^\circ) = \frac{1}{2} \] For \( \cos(36^\circ) \), we can use the known value: \[ \cos(36^\circ) = \frac{\sqrt{5} + 1}{4} \] 6. **Combine the Results**: Now, substitute these values into the equation: \[ \cos^2 48^\circ - \sin^2 12^\circ = \frac{1}{2} \cdot \frac{\sqrt{5} + 1}{4} \] 7. **Simplify the Expression**: Multiply the fractions: \[ = \frac{\sqrt{5} + 1}{8} \] ### Final Answer: Thus, the value of \( \cos^2 48^\circ - \sin^2 12^\circ \) is: \[ \frac{\sqrt{5} + 1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

The values of cos^2 73^0+cos^2 47^0-sin^2 43^0+sin^2 107^0 is equal to: (b) 1/2 (c) (sqrt(3))/2 (d) sin^2 73^@+cos^4 73^@

(cos 10^0+sin 10^0)/(cos 10^0-sin 10^0) is equal to tan55^0 b. cos 55^0 c. -tan35^0 d. -cot35^0

Prove that: cos^2 48^0-sin^2 12^0=(sqrt(5)+1)/8

The value of cos24^0/(2tan33^0sin^2(57^0))+sin162^0/(sin18^0-cos18^0tan9^0)+cos162^0 is equal to

If sin47^0+sin 61^0-sin 11^0-sin 25^0 is equal to a. adot\ sin36^0 b. cos36^0 c. cos7^0 d. cos7^0

The exact value of (96sin80^0sin65^0sin35^0)/(sin20^0+sin 50^0+sin 110^0) is equal to 12 (b) 24 (c) -12 (d) 48

The value of sin 50^(0)-sin 70^0+sin 10^0 is equal to a. 0 b. 1 c. 2 d. 1//2

sin 12^(@) sin 48^(@) sin 54^(@) is equal to

lim_{x\rightarrow 0}(1-cos2x)/(sin^(2)2x) is equal to

The value of sin^2 12^0+sin^2 21^0+sin^2 39^0+sin^2 48^0-sin^2 9^0-sin^2 18^0 is _______