Home
Class 12
MATHS
The expression (sin 8thetacos theta-sin6...

The expression `(sin 8thetacos theta-sin6 thetacos 3 theta)/(cos 2 thetacos theta-sin 3 thetasin 4 theta)` is equals:-

A

`tan theta`

B

`tan 2 theta`

C

`sin 2 theta`

D

`cos 2 theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sin 8\theta \cos \theta - \sin 6\theta \cos 3\theta}{\cos 2\theta \cos \theta - \sin 3\theta \sin 4\theta} \] we can follow these steps: ### Step 1: Rewrite the expression Let \( x = \frac{\sin 8\theta \cos \theta - \sin 6\theta \cos 3\theta}{\cos 2\theta \cos \theta - \sin 3\theta \sin 4\theta} \). ### Step 2: Multiply numerator and denominator by 2 To simplify, we multiply both the numerator and denominator by 2: \[ x = \frac{2(\sin 8\theta \cos \theta - \sin 6\theta \cos 3\theta)}{2(\cos 2\theta \cos \theta - \sin 3\theta \sin 4\theta)} \] ### Step 3: Apply the sine and cosine identities Using the identities: - \( 2 \sin A \cos B = \sin(A + B) + \sin(A - B) \) - \( 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \) - \( 2 \sin A \sin B = \cos(A - B) - \cos(A + B) \) We can simplify the numerator and denominator. #### Numerator: 1. For \( \sin 8\theta \cos \theta \): \[ 2 \sin 8\theta \cos \theta = \sin(8\theta + \theta) + \sin(8\theta - \theta) = \sin 9\theta + \sin 7\theta \] 2. For \( \sin 6\theta \cos 3\theta \): \[ 2 \sin 6\theta \cos 3\theta = \sin(6\theta + 3\theta) + \sin(6\theta - 3\theta) = \sin 9\theta + \sin 3\theta \] 3. Thus, the numerator becomes: \[ \sin 9\theta + \sin 7\theta - (\sin 9\theta + \sin 3\theta) = \sin 7\theta - \sin 3\theta \] #### Denominator: 1. For \( \cos 2\theta \cos \theta \): \[ 2 \cos 2\theta \cos \theta = \cos(2\theta + \theta) + \cos(2\theta - \theta) = \cos 3\theta + \cos \theta \] 2. For \( \sin 3\theta \sin 4\theta \): \[ 2 \sin 3\theta \sin 4\theta = \cos(3\theta - 4\theta) - \cos(3\theta + 4\theta) = \cos(-\theta) - \cos(7\theta) = \cos \theta - \cos 7\theta \] 3. Thus, the denominator becomes: \[ \cos 3\theta + \cos \theta - (\cos \theta - \cos 7\theta) = \cos 3\theta + \cos 7\theta \] ### Step 4: Simplify the expression Now we have: \[ x = \frac{\sin 7\theta - \sin 3\theta}{\cos 3\theta + \cos 7\theta} \] ### Step 5: Apply sine and cosine difference formulas Using the identities: - \( \sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \) - \( \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \) We can rewrite the numerator and denominator: 1. Numerator: \[ \sin 7\theta - \sin 3\theta = 2 \cos\left(\frac{7\theta + 3\theta}{2}\right) \sin\left(\frac{7\theta - 3\theta}{2}\right) = 2 \cos(5\theta) \sin(2\theta) \] 2. Denominator: \[ \cos 3\theta + \cos 7\theta = 2 \cos\left(\frac{3\theta + 7\theta}{2}\right) \cos\left(\frac{7\theta - 3\theta}{2}\right) = 2 \cos(5\theta) \cos(2\theta) \] ### Step 6: Final simplification Now substituting these back into the expression: \[ x = \frac{2 \cos(5\theta) \sin(2\theta)}{2 \cos(5\theta) \cos(2\theta)} \] The \( 2 \cos(5\theta) \) terms cancel out (assuming \( \cos(5\theta) \neq 0 \)): \[ x = \frac{\sin(2\theta)}{\cos(2\theta)} = \tan(2\theta) \] ### Conclusion Thus, the expression simplifies to: \[ \boxed{\tan(2\theta)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

The expression (sin8thetacostheta-sin6thetacos3theta)/(cos2thetacostheta-sin3thetasin4theta) is equals-

(sin 3theta+sin5theta+sin7theta+sin9theta)/(cos 3theta+cos 5theta+cos 7theta+cos9theta) is equal to

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Prove that : (sin 5theta + sin 3theta)/(cos 5theta + cos 3theta) = tan 4theta

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

(sin5theta+sin2theta-sin theta)/(cos5theta+2cos3theta+2cos^(2)theta+costheta) is equal to

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

Prove that : cos^3 2theta+3cos2theta=4(cos^6theta-sin^6 theta)