Home
Class 12
MATHS
(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sin...

`(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))` is equal to

A

`tan A`

B

`(SinA)/(sinB)`

C

`(cos A)/(cos B)`

D

`(SinC)/(cosB)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sin(A - C) + 2\sin A + \sin(A + C)}{\sin(B - C) + 2\sin B + \sin(B + C)}, \] we will start by simplifying both the numerator and the denominator using the sine addition and subtraction formulas. ### Step 1: Expand the numerator Using the sine addition and subtraction formulas: \[ \sin(A - C) = \sin A \cos C - \cos A \sin C, \] \[ \sin(A + C) = \sin A \cos C + \cos A \sin C. \] Substituting these into the numerator gives: \[ \sin(A - C) + \sin(A + C) = (\sin A \cos C - \cos A \sin C) + (\sin A \cos C + \cos A \sin C). \] ### Step 2: Combine like terms in the numerator Combining the terms, we find: \[ \sin(A - C) + \sin(A + C) = 2\sin A \cos C. \] Adding \(2\sin A\) to this result, we have: \[ 2\sin A \cos C + 2\sin A = 2\sin A(\cos C + 1). \] ### Step 3: Expand the denominator Now we will do the same for the denominator: \[ \sin(B - C) = \sin B \cos C - \cos B \sin C, \] \[ \sin(B + C) = \sin B \cos C + \cos B \sin C. \] Substituting these into the denominator gives: \[ \sin(B - C) + \sin(B + C) = (\sin B \cos C - \cos B \sin C) + (\sin B \cos C + \cos B \sin C). \] ### Step 4: Combine like terms in the denominator Combining the terms, we find: \[ \sin(B - C) + \sin(B + C) = 2\sin B \cos C. \] Adding \(2\sin B\) to this result, we have: \[ 2\sin B \cos C + 2\sin B = 2\sin B(\cos C + 1). \] ### Step 5: Substitute back into the expression Now substituting the simplified numerator and denominator back into the expression gives: \[ \frac{2\sin A(\cos C + 1)}{2\sin B(\cos C + 1)}. \] ### Step 6: Simplify the expression The \(2\) and \((\cos C + 1)\) terms cancel out (assuming \(\cos C + 1 \neq 0\)), leading to: \[ \frac{\sin A}{\sin B}. \] ### Final Answer Thus, the expression simplifies to: \[ \frac{\sin A}{\sin B}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

Prove that: (sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C))=(sinA)/(sinB)

Prove that: (sin(A-C)+2sinA+sin(A+C)) / ("sin"("B"-"C")+2sinB+"sin"(B+C)) = (sinA)/(sinB)

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C ) + (sin (C - A))/( sin C sin A) =0

If A, B, C are the angles of a triangle, then the determinant Delta = |(sin 2 A,sin C,sin B),(sin C,sin 2B,sin A),(sin B,sin A,sin 2 C)| is equal to

Prove that: ("sin"(A-B))/(sin A sin B)+("sin"(B-C))/(sin B sin C)+("sin"(C-A))/(sin C sin A)=0

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2) sin. (B)/(2) sin. (C)/(2) then the value of 3k^(3)+2k^(2)+k+1 is equal to

If a/(sinA)=K , then the area of "Triangle ABC" in terms of K and sines of the angles is (K^2)/4sin A sin B sin C (b) (K^2)/2sin A sin B sin C 2K^2sin A sin B "sin"(A+B) (d) none

In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , then its angle A is equal to-