Home
Class 12
MATHS
If x=ycos((2pi)/3)=zcos((4pi)/3), then x...

If `x=ycos((2pi)/3)=zcos((4pi)/3)`, then xy+yz+zx=

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x = y \cos\left(\frac{2\pi}{3}\right) = z \cos\left(\frac{4\pi}{3}\right) \) and find the value of \( xy + yz + zx \), we can follow these steps: ### Step 1: Evaluate the cosine values First, we need to find the values of \( \cos\left(\frac{2\pi}{3}\right) \) and \( \cos\left(\frac{4\pi}{3}\right) \). - \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \) - \( \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2} \) ### Step 2: Substitute the cosine values into the equations Now substitute these values into the equations: \[ x = y \left(-\frac{1}{2}\right) \quad \text{and} \quad x = z \left(-\frac{1}{2}\right) \] This gives us: \[ x = -\frac{y}{2} \quad \text{and} \quad x = -\frac{z}{2} \] ### Step 3: Express \( y \) and \( z \) in terms of \( x \) From the equations above, we can express \( y \) and \( z \) in terms of \( x \): \[ y = -2x \quad \text{and} \quad z = -2x \] ### Step 4: Substitute \( y \) and \( z \) into \( xy + yz + zx \) Now we can substitute \( y \) and \( z \) into the expression \( xy + yz + zx \): \[ xy + yz + zx = x(-2x) + (-2x)(-2x) + (-2x)x \] ### Step 5: Simplify the expression Let's simplify each term: 1. \( xy = -2x^2 \) 2. \( yz = 4x^2 \) 3. \( zx = -2x^2 \) Now combine these: \[ xy + yz + zx = -2x^2 + 4x^2 - 2x^2 = 0 \] ### Final Result Thus, the value of \( xy + yz + zx \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , prove that x y+y z+z x=0.

If xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3) , prove that x y+y z+z x=0.

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal to

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal to

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

The value of the determinant |(sintheta, costheta, sin2theta) , (sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)) , (sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3))|

If tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2) , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx