Home
Class 12
MATHS
The expression cos^(6)theta+sin^(6) thet...

The expression `cos^(6)theta+sin^(6) theta+3 sin^(2)thetacos^(2)theta` simplifies to :

A

`4+sqrt(10)`

B

`4-sqrt(10)`

C

`0`

D

4

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise Yourself|12 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

The value of the expression cos^6theta+sin^6theta+3sin^2thetacos^2theta=

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

Prove that sin^(4)theta+2sin^(2)thetacos^(2)theta+cos^(4)theta=1

Prove that sin^(4)theta+sin^(2)thetacos^(2)theta=sin^(2)theta

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

Prove that sin^6theta+cos^6theta=1-3sin^2thetacos^2theta

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)