Home
Class 12
MATHS
If cos alpha=(2cos beta-1)/(2-cos beta) ...

If `cos alpha=(2cos beta-1)/(2-cos beta)` then `tan (alpha/2)` is equal to

A

2

B

`sqrt(2)`

C

3

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos \alpha = \frac{2 \cos \beta - 1}{2 - \cos \beta} \) and find \( \tan \left( \frac{\alpha}{2} \right) \), we can follow these steps: ### Step 1: Apply the Componendo and Dividendo Rule We start with the given equation: \[ \cos \alpha = \frac{2 \cos \beta - 1}{2 - \cos \beta} \] Using the Componendo and Dividendo rule, we can rewrite the equation as: \[ \frac{\cos \alpha - 1}{\cos \alpha + 1} = \frac{2 \cos \beta - 1}{2 - (2 \cos \beta - 1)} \] This simplifies to: \[ \frac{\cos \alpha - 1}{\cos \alpha + 1} = \frac{2 \cos \beta - 1}{3 - 2 \cos \beta} \] ### Step 2: Cross-Multiply Cross-multiplying gives us: \[ (\cos \alpha - 1)(3 - 2 \cos \beta) = (2 \cos \beta - 1)(\cos \alpha + 1) \] ### Step 3: Expand Both Sides Expanding both sides: \[ 3 \cos \alpha - 2 \cos \alpha \cos \beta - 3 + 2 \cos \beta = 2 \cos \beta \cos \alpha + 2 \cos \beta - \cos \alpha - 1 \] ### Step 4: Rearranging Terms Rearranging the terms gives us: \[ 3 \cos \alpha - 2 \cos \alpha \cos \beta + \cos \alpha + 1 = 2 \cos \beta \cos \alpha + 2 \cos \beta + 3 \] Combining like terms leads to: \[ 4 \cos \alpha - 2 \cos \alpha \cos \beta = 2 \cos \beta + 4 \] ### Step 5: Factor Out Common Terms Factoring out \( \cos \alpha \): \[ \cos \alpha (4 - 2 \cos \beta) = 2 \cos \beta + 4 \] ### Step 6: Solve for \( \tan \left( \frac{\alpha}{2} \right) \) Using the half-angle identity: \[ \tan \left( \frac{\alpha}{2} \right) = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} \] Substituting \( \cos \alpha \): \[ \tan \left( \frac{\alpha}{2} \right) = \sqrt{\frac{1 - \frac{2 \cos \beta - 1}{2 - \cos \beta}}{1 + \frac{2 \cos \beta - 1}{2 - \cos \beta}}} \] ### Step 7: Simplifying the Expression This simplifies to: \[ \tan \left( \frac{\alpha}{2} \right) = \sqrt{\frac{(2 - \cos \beta) - (2 \cos \beta - 1)}{(2 - \cos \beta) + (2 \cos \beta - 1)}} \] This leads to: \[ \tan \left( \frac{\alpha}{2} \right) = \sqrt{\frac{3 - \cos \beta}{1 + \cos \beta}} \] ### Final Result Thus, we find: \[ \tan \left( \frac{\alpha}{2} \right) = \sqrt{3} \tan \left( \frac{\beta}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S2|9 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2beta) then tan alpha cot beta =

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

Show that cos^(-1) ((cos alpha+cos beta)/(1+cosalpha cosbeta))=2 tan^(-1)(tan (alpha/2) tan (beta/2))

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

If cosalpha+cosbeta=0=sinalpha+sinbeta, then cos2alpha+cos2beta is equal to (a) -2"sin"(alpha+beta) (b) -2cos(alpha+beta) (c) 2"sin"(alpha+beta) (d) 2"cos"(alpha+beta)

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

If x =cos alpha+cos beta-cos(alpha+beta) and y=4 sin.(alpha)/(2)sin.(beta)/(2)cos.((alpha+beta)/(2)) , then (x-y) equals

If cos( alpha+beta) + sin(alpha-beta) = 0 and 2010tan beta - 1 = 0 then tan alpha is equal to

ALLEN-COMPOUND ANGLES-EX-02
  1. If x +y= 3-cos4theta and x-y=4sin2theta then

    Text Solution

    |

  2. If tan B=(n sin A cos A)/(1-n cos^(2)A), then tan(A+B) equals to

    Text Solution

    |

  3. Prove that: sin, (2pi)/7 + sin, (4pi)/7 +sin, (8pi)/7 = sqrt(7)/2

    Text Solution

    |

  4. If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

    Text Solution

    |

  5. If (cos3x)/(cosx)=1/3 for some angle x,0<=x<=pi/2 then the value of (s...

    Text Solution

    |

  6. If (5pi)/(2)ltxlt3pi, then the value of the expression (sqrt(1-sinx)+s...

    Text Solution

    |

  7. If AD is the altitude on BC and AD produced meets the circumcircle of ...

    Text Solution

    |

  8. The exact value of (96sin80^0sin65^0sin35^0)/(sin20^0+sin 50^0+sin 110...

    Text Solution

    |

  9. The value of cotx+cot(60^@+x)+cot(120^@+x) is equal to

    Text Solution

    |

  10. The value of cosec(pi/18)-sqrt3sec(pi/18) is a

    Text Solution

    |

  11. If tan x+tan y = 25 and cot x+ cot y = 30, then tan(x+y) equals to

    Text Solution

    |

  12. If cos(alpha+beta) + sin(alpha-beta) = 0 and 2010tanbeta - 1 = 0 then ...

    Text Solution

    |

  13. In a right angled triangle the hypotenuse is 2sqrt(2) times the perpen...

    Text Solution

    |

  14. The value of cot7(1^0)/2+tan67(1^(@))/2-cot67(1^(@))/2-tan7(1^0)/2 is

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  17. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  18. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  19. Two parallel chords are drawn on the same side of the centre of a circ...

    Text Solution

    |