Home
Class 12
MATHS
If (cos3x)/(cosx)=1/3 for some angle x,0...

If `(cos3x)/(cosx)=1/3` for some angle x,0<=x<=pi/2 then the value of `(sin3x)/(sin2x)` for some x is

A

`(7)/(3)`

B

`(5)/(3)`

C

1

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equation given: \[ \frac{\cos 3x}{\cos x} = \frac{1}{3} \] ### Step 1: Express \(\cos 3x\) in terms of \(\cos x\) Using the triple angle formula for cosine, we have: \[ \cos 3x = 4 \cos^3 x - 3 \cos x \] Substituting this into the equation gives: \[ \frac{4 \cos^3 x - 3 \cos x}{\cos x} = \frac{1}{3} \] ### Step 2: Simplify the equation This simplifies to: \[ 4 \cos^2 x - 3 = \frac{1}{3} \] ### Step 3: Clear the fraction To eliminate the fraction, multiply both sides by 3: \[ 3(4 \cos^2 x - 3) = 1 \] This expands to: \[ 12 \cos^2 x - 9 = 1 \] ### Step 4: Rearrange the equation Rearranging gives: \[ 12 \cos^2 x = 10 \] ### Step 5: Solve for \(\cos^2 x\) Dividing both sides by 12: \[ \cos^2 x = \frac{10}{12} = \frac{5}{6} \] ### Step 6: Find \(\cos x\) Taking the square root: \[ \cos x = \sqrt{\frac{5}{6}} \] ### Step 7: Find \(\sin x\) Using the Pythagorean identity \(\sin^2 x + \cos^2 x = 1\): \[ \sin^2 x = 1 - \cos^2 x = 1 - \frac{5}{6} = \frac{1}{6} \] Thus: \[ \sin x = \sqrt{\frac{1}{6}} = \frac{1}{\sqrt{6}} \] ### Step 8: Find \(\sin 3x\) Using the triple angle formula for sine: \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] Calculating \(\sin^3 x\): \[ \sin^3 x = \left(\frac{1}{\sqrt{6}}\right)^3 = \frac{1}{6\sqrt{6}} \] Substituting back into the sine formula: \[ \sin 3x = 3 \left(\frac{1}{\sqrt{6}}\right) - 4 \left(\frac{1}{6\sqrt{6}}\right) \] ### Step 9: Simplify \(\sin 3x\) This becomes: \[ \sin 3x = \frac{3}{\sqrt{6}} - \frac{4}{6\sqrt{6}} = \frac{3 \cdot 6 - 4}{6\sqrt{6}} = \frac{18 - 4}{6\sqrt{6}} = \frac{14}{6\sqrt{6}} = \frac{7}{3\sqrt{6}} \] ### Step 10: Find \(\sin 2x\) Using the double angle formula: \[ \sin 2x = 2 \sin x \cos x \] Substituting the values we found: \[ \sin 2x = 2 \left(\frac{1}{\sqrt{6}}\right) \left(\sqrt{\frac{5}{6}}\right) = 2 \cdot \frac{\sqrt{5}}{6} = \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3} \] ### Step 11: Find \(\frac{\sin 3x}{\sin 2x}\) Now we can find: \[ \frac{\sin 3x}{\sin 2x} = \frac{\frac{7}{3\sqrt{6}}}{\frac{\sqrt{5}}{3}} = \frac{7}{\sqrt{6} \cdot \sqrt{5}} = \frac{7}{\sqrt{30}} \] ### Final Answer Thus, the value of \(\frac{\sin 3x}{\sin 2x}\) is: \[ \frac{7}{\sqrt{30}} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S2|9 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

(cos^3x-sin^3x)/(cosx-sinx)

int (1-cosx) /(cos x(1+cos x)) dx

If cosecx=2/sqrt3 and cotx=-1/sqrt3 for x in[0,2pi] then cosx+cos2x+cos3x+....+cos100x is

If 4cos^(2)x=3 and x is an acute angle, find the value of : cos3x

If (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx)=1 , then find the smallest positive value of x.

int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

To prove (cos5x+cos4x)/(1-2cos3x) = -cos2x-cosx

Evaluate: int(cosx)/(cos3x)dx

Evaluate: int(cosx)/(cos3x)dx

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to

ALLEN-COMPOUND ANGLES-EX-02
  1. If x +y= 3-cos4theta and x-y=4sin2theta then

    Text Solution

    |

  2. If tan B=(n sin A cos A)/(1-n cos^(2)A), then tan(A+B) equals to

    Text Solution

    |

  3. Prove that: sin, (2pi)/7 + sin, (4pi)/7 +sin, (8pi)/7 = sqrt(7)/2

    Text Solution

    |

  4. If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

    Text Solution

    |

  5. If (cos3x)/(cosx)=1/3 for some angle x,0<=x<=pi/2 then the value of (s...

    Text Solution

    |

  6. If (5pi)/(2)ltxlt3pi, then the value of the expression (sqrt(1-sinx)+s...

    Text Solution

    |

  7. If AD is the altitude on BC and AD produced meets the circumcircle of ...

    Text Solution

    |

  8. The exact value of (96sin80^0sin65^0sin35^0)/(sin20^0+sin 50^0+sin 110...

    Text Solution

    |

  9. The value of cotx+cot(60^@+x)+cot(120^@+x) is equal to

    Text Solution

    |

  10. The value of cosec(pi/18)-sqrt3sec(pi/18) is a

    Text Solution

    |

  11. If tan x+tan y = 25 and cot x+ cot y = 30, then tan(x+y) equals to

    Text Solution

    |

  12. If cos(alpha+beta) + sin(alpha-beta) = 0 and 2010tanbeta - 1 = 0 then ...

    Text Solution

    |

  13. In a right angled triangle the hypotenuse is 2sqrt(2) times the perpen...

    Text Solution

    |

  14. The value of cot7(1^0)/2+tan67(1^(@))/2-cot67(1^(@))/2-tan7(1^0)/2 is

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  17. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  18. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  19. Two parallel chords are drawn on the same side of the centre of a circ...

    Text Solution

    |