Home
Class 12
MATHS
The value of cot7(1^0)/2+tan67(1^(@))/2-...

The value of `cot7(1^0)/2+tan67(1^(@))/2-cot67(1^(@))/2-tan7(1^0)/2` is

A

a rational number

B

irrational number

C

`2(3+2sqrt(3))`

D

`2(3-sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \cot \left( 7 \frac{1}{2} \right) + \tan \left( 67 \frac{1}{2} \right) - \cot \left( 67 \frac{1}{2} \right) - \tan \left( 7 \frac{1}{2} \right) \] ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert the mixed fractions into improper fractions: - \( 7 \frac{1}{2} = \frac{15}{2} \) - \( 67 \frac{1}{2} = \frac{135}{2} \) So, the expression becomes: \[ \cot \left( \frac{15}{2} \right) + \tan \left( \frac{135}{2} \right) - \cot \left( \frac{135}{2} \right) - \tan \left( \frac{15}{2} \right) \] ### Step 2: Rewrite Cotangent and Tangent in Terms of Sine and Cosine Using the definitions of cotangent and tangent, we rewrite the expression: \[ \cot \left( \frac{15}{2} \right) = \frac{\cos \left( \frac{15}{2} \right)}{\sin \left( \frac{15}{2} \right)}, \quad \tan \left( \frac{135}{2} \right) = \frac{\sin \left( \frac{135}{2} \right)}{\cos \left( \frac{135}{2} \right)} \] Thus, the expression becomes: \[ \frac{\cos \left( \frac{15}{2} \right)}{\sin \left( \frac{15}{2} \right)} + \frac{\sin \left( \frac{135}{2} \right)}{\cos \left( \frac{135}{2} \right)} - \frac{\cos \left( \frac{135}{2} \right)}{\sin \left( \frac{135}{2} \right)} - \frac{\sin \left( \frac{15}{2} \right)}{\cos \left( \frac{15}{2} \right)} \] ### Step 3: Combine Terms Now, we can combine the terms by finding a common denominator. The common denominator for each pair of terms is \( \sin \left( \frac{15}{2} \right) \cos \left( \frac{15}{2} \right) \) and \( \sin \left( \frac{135}{2} \right) \cos \left( \frac{135}{2} \right) \). This results in: \[ \frac{\cos^2 \left( \frac{15}{2} \right) - \sin^2 \left( \frac{15}{2} \right)}{\sin \left( \frac{15}{2} \right) \cos \left( \frac{15}{2} \right)} + \frac{\sin^2 \left( \frac{135}{2} \right) - \cos^2 \left( \frac{135}{2} \right)}{\sin \left( \frac{135}{2} \right) \cos \left( \frac{135}{2} \right)} \] ### Step 4: Use Trigonometric Identities Using the identities: - \( \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \) - \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \) We rewrite the expression: \[ \frac{2 \cos \left( 15 \right)}{\sin \left( 15 \right)} - \frac{2 \cos \left( 135 \right)}{\sin \left( 135 \right)} \] ### Step 5: Evaluate Cotangent Values We know that \( \cot(135) = -1 \), so we can substitute: \[ = 2 \left( \cot(15) + 1 \right) \] ### Step 6: Find the Value of \( \cot(15) \) Using the angle subtraction formula: \[ \tan(15) = \tan(45 - 30) = \frac{\tan(45) - \tan(30)}{1 + \tan(45) \tan(30)} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}} \] ### Step 7: Rationalize and Simplify After rationalizing, we find: \[ \tan(15) = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] Thus, \[ \cot(15) = \frac{1}{\tan(15)} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] ### Step 8: Final Calculation Substituting back into our expression gives us: \[ 2 \left( \frac{\sqrt{3} + 1}{\sqrt{3} - 1} + 1 \right) \] ### Conclusion After simplification, we find the final value of the original expression.
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S2|9 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-01|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

The value of tan7 1/2^@ equal to

Find the value of cot(tan^(-1)a+cot^(-1)a)

Find the value of: cot(tan^(-1)a+cot^(-1)a)

Write the value of "cot"(tan^(-1)a+cot^(-1)a) .

The value of cot18^(@)(cot72^(@)cos^(2)22^(@)+(1)/(tan72^(@)sec^(2)68^(@))) is

Value of the expression (sec1 1^(@)sec1 9^(@)-2cot7 1^(@))/tan11^(@) is equal to

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The value of tan(tan^(-1)5+"cot"^(-1)(1)/(3)) is :

The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) + tan^(-1).(4)/(67) ... oo equals

ALLEN-COMPOUND ANGLES-EX-02
  1. If x +y= 3-cos4theta and x-y=4sin2theta then

    Text Solution

    |

  2. If tan B=(n sin A cos A)/(1-n cos^(2)A), then tan(A+B) equals to

    Text Solution

    |

  3. Prove that: sin, (2pi)/7 + sin, (4pi)/7 +sin, (8pi)/7 = sqrt(7)/2

    Text Solution

    |

  4. If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

    Text Solution

    |

  5. If (cos3x)/(cosx)=1/3 for some angle x,0<=x<=pi/2 then the value of (s...

    Text Solution

    |

  6. If (5pi)/(2)ltxlt3pi, then the value of the expression (sqrt(1-sinx)+s...

    Text Solution

    |

  7. If AD is the altitude on BC and AD produced meets the circumcircle of ...

    Text Solution

    |

  8. The exact value of (96sin80^0sin65^0sin35^0)/(sin20^0+sin 50^0+sin 110...

    Text Solution

    |

  9. The value of cotx+cot(60^@+x)+cot(120^@+x) is equal to

    Text Solution

    |

  10. The value of cosec(pi/18)-sqrt3sec(pi/18) is a

    Text Solution

    |

  11. If tan x+tan y = 25 and cot x+ cot y = 30, then tan(x+y) equals to

    Text Solution

    |

  12. If cos(alpha+beta) + sin(alpha-beta) = 0 and 2010tanbeta - 1 = 0 then ...

    Text Solution

    |

  13. In a right angled triangle the hypotenuse is 2sqrt(2) times the perpen...

    Text Solution

    |

  14. The value of cot7(1^0)/2+tan67(1^(@))/2-cot67(1^(@))/2-tan7(1^0)/2 is

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  17. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  18. Consider the polynomical P(x) = (x - cos36^(@))(x - cos84^(@))(x - cos...

    Text Solution

    |

  19. Two parallel chords are drawn on the same side of the centre of a circ...

    Text Solution

    |