Home
Class 12
MATHS
The maximum values of 3 costheta+5sin(th...

The maximum values of `3 costheta+5sin(theta-(pi)/(6))` for any real value of `theta` is:

A

`sqrt(1 9)`

B

`sqrt(79)/(2)`

C

`sqrt(31)`

D

`sqrt(34)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \(3 \cos \theta + 5 \sin \left(\theta - \frac{\pi}{6}\right)\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = 3 \cos \theta + 5 \sin \left(\theta - \frac{\pi}{6}\right) \] Using the sine subtraction formula, we can rewrite \( \sin \left(\theta - \frac{\pi}{6}\right) \) as: \[ \sin \left(\theta - \frac{\pi}{6}\right) = \sin \theta \cos \frac{\pi}{6} - \cos \theta \sin \frac{\pi}{6} \] Substituting the values of \( \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \) and \( \sin \frac{\pi}{6} = \frac{1}{2} \), we have: \[ \sin \left(\theta - \frac{\pi}{6}\right) = \sin \theta \cdot \frac{\sqrt{3}}{2} - \cos \theta \cdot \frac{1}{2} \] ### Step 2: Substitute back into the expression Now substituting this back into our expression for \(y\): \[ y = 3 \cos \theta + 5 \left(\frac{\sqrt{3}}{2} \sin \theta - \frac{1}{2} \cos \theta\right) \] This simplifies to: \[ y = 3 \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta - \frac{5}{2} \cos \theta \] Combining the cosine terms: \[ y = \left(3 - \frac{5}{2}\right) \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta \] \[ y = \frac{1}{2} \cos \theta + \frac{5\sqrt{3}}{2} \sin \theta \] ### Step 3: Find the maximum value The maximum value of \(a \cos \theta + b \sin \theta\) is given by \(\sqrt{a^2 + b^2}\). Here, \(a = \frac{1}{2}\) and \(b = \frac{5\sqrt{3}}{2}\). Calculating \(a^2 + b^2\): \[ a^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] \[ b^2 = \left(\frac{5\sqrt{3}}{2}\right)^2 = \frac{75}{4} \] Adding these together: \[ a^2 + b^2 = \frac{1}{4} + \frac{75}{4} = \frac{76}{4} = 19 \] Thus, the maximum value of \(y\) is: \[ \sqrt{19} \] ### Final Answer The maximum value of \(3 \cos \theta + 5 \sin \left(\theta - \frac{\pi}{6}\right)\) is: \[ \sqrt{76} = 2\sqrt{19} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-JM|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . .

Find maximum and minium value of 5costheta+3sintheta(theta+pi/6) for all real values of theta .

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

The maximum value of 5 sin theta+3 sin (theta + pi/3) + 3 is -

The maximum value of 1+sin(pi/4+theta)+2cos(pi/4-theta) for real values of theta is

Can 6 sin^2 theta - 7 sin theta + 2 = 0 for any real value of theta ?

Minimum value of cos2theta+costheta for all real value of theta is

For theta in(0,pi/2) , the maximum value of sin(theta+pi/6)+cos(theta+pi/6) is attained at theta =

Statement I The maximum value of sin theta+costheta is 2. Statement II The maximum value of sin theta is 1 and that of cos theta is also 1.

If A = sin^2 theta+ cos^4 theta , then for all real values of theta