Home
Class 12
MATHS
Let theta in (0,pi/4) and t1=(tan theta)...

Let `theta in (0,pi/4) and t_1=(tan theta)^(tan theta), t_2=(tan theta)6(cot theta), t_3=(cot theta)^(tan theta) and t_4=(cot theta)^(cot theta),` then

A

`t_(1)gtt_(2)gtt_(3)gtt_(4)`

B

`t_(4)gtt_(3)gtt_(2)gtt_(1)`

C

`t_(3)gtt_(1)gtt_(2)gtt_(4)`

D

`t_(2)gtt_(3)gtt_(1)gtt_(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expressions given for \( t_1, t_2, t_3, \) and \( t_4 \) based on the values of \( \tan \theta \) and \( \cot \theta \) for \( \theta \in (0, \frac{\pi}{4}) \). ### Step-by-Step Solution: 1. **Define the expressions:** - \( t_1 = (\tan \theta)^{\tan \theta} \) - \( t_2 = (\tan \theta)^{\cot \theta} \) - \( t_3 = (\cot \theta)^{\tan \theta} \) - \( t_4 = (\cot \theta)^{\cot \theta} \) 2. **Understand the behavior of \( \tan \theta \) and \( \cot \theta \):** - For \( \theta \in (0, \frac{\pi}{4}) \): - \( \tan \theta \) is in the interval \( (0, 1) \) - \( \cot \theta = \frac{1}{\tan \theta} \) is in the interval \( (1, \infty) \) 3. **Analyze \( t_1 \):** - Since \( \tan \theta < 1 \), \( t_1 = (\tan \theta)^{\tan \theta} \) will be a positive number less than 1. 4. **Analyze \( t_2 \):** - \( t_2 = (\tan \theta)^{\cot \theta} \) - Since \( \tan \theta < 1 \) and \( \cot \theta > 1 \), \( t_2 \) will also be a positive number less than 1, but it will be smaller than \( t_1 \) because raising a number less than 1 to a power greater than 1 results in a smaller number. 5. **Analyze \( t_3 \):** - \( t_3 = (\cot \theta)^{\tan \theta} \) - Here, \( \cot \theta > 1 \) and \( \tan \theta < 1 \), so \( t_3 \) will be a positive number greater than 1 but less than \( \cot \theta \). 6. **Analyze \( t_4 \):** - \( t_4 = (\cot \theta)^{\cot \theta} \) - Since \( \cot \theta > 1 \), \( t_4 \) will be a positive number greater than 1 and significantly larger than \( t_3 \). 7. **Comparison of the values:** - From the analysis: - \( t_4 > t_3 > t_1 > t_2 \) - Therefore, the order of the values is: - \( t_4 > t_3 > t_1 > t_2 \) ### Conclusion: The greatest value is \( t_4 \), followed by \( t_3 \), then \( t_1 \), and the smallest is \( t_2 \).
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-JM|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

Let theta in (0,pi/4) and t_1=(tan theta)^(tan theta), t_2=(tan theta)^(cot theta), t_3=(cot theta)^(tan theta) and t_4=(cot theta)^(cot theta), then

Let theta in ( 0, pi/4) and t_1 = (tan theta)^(tan theta) , t_2 = (tan theta)^(cot theta), t_3 = ( cot theta)^(tan theta), t_4=(cot theta)^(cot theta) , then

Prove that (tan theta)/(1-cot theta)+(cot theta)/(1-tan theta) = (sec theta cosec theta +1)

Prove that : (tan theta)/(1 -cot theta) + (cot theta)/(1- tan theta) = 1 + sec theta cosec theta

tan theta + 2 tan 2 theta + 4 tan 4 theta + 8 cot 8 theta = cot theta.

If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy=

Solve 2 tan theta-cot theta=-1 .

Solve 4cot2theta=cot^2theta-tan^2theta

y=1/((1+tan theta)^(sin theta-cos theta)+(cot theta)^(cos theta-cot theta))+ 1/((1+tan theta)^(cos theta-sin theta)+(cot theta)^(sin theta-cottheta)) +1/((1+tan theta)^(cos theta-cot theta)+(cot theta)^(cot theta-sin theta)) then (dy)/(dx) at theta=pi/3 is

Solve sin^2 theta tan theta+cos^2 theta cot theta-sin 2 theta=1+tan theta+cot theta