Home
Class 12
MATHS
If (sin^(4)x)/(2)+(cos^(4)x)/(3)=1/5, th...

If `(sin^(4)x)/(2)+(cos^(4)x)/(3)=1/5`, then

A

`tan^(2)x=(2)/(3)`

B

`(sin^(8)x)/(8)+(cos^(8)x)/(27)=(1)/(125)`

C

`tan^(2)x=(1)/(3)`

D

`(sin^(8)x)/(8)+(cos^(8)x)/(27)=( 2)/(125)`.

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-JM|7 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If (sin^4x)/2+(cos^4x)/3=1/5t h e n tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

If sin^4x/2+cos^4x/3=1/5 then

Solve sin^4(x/3)+cos^4(x/3)>1/2

If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then

Solve sin^(5)x=1+cos^(4)3x

lim_(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

If 3sin(x y)+4cos(x y)=5 , then (dy)/(dx)= (a) y/x (b) (3sin(x y)+4cos(x y))/(3cos(x y)-4sin(x y)) (c) (3cos(x y)+4sin(x y))/(4cos(x y)-3sin(x y)) (d) none

the least positive value of x satisfying ( sin^(2) 2x + 4 sin^(4) x - 4 sin^(2) x cos^(2) x )/ 4 = 1/9 is

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

Let t_(1)= (sin^(-1)x)^(sin^(-1)x),t_(2)= (sin^(-1) x)^(cos^(-1)x),t_(3) = (cos^(-1)x)^(sin^(-1)x),t_(4) = (cos^(-1)x)^(cos^(-1)x) , Match the follwing items of Column I with Column II