Home
Class 12
MATHS
If for an A.P. a1,a2,a3,........,an,.......

If for an `A.P. a_1,a_2,a_3,........,a_n,........a_1+a_3+a_5=-12 and a_1a_2a_3=8,` then the value of `a_2+a_4+a_6` equals

A

`-12`

B

`-16`

C

`-18`

D

`-21`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the Arithmetic Progression (A.P.) Let the first term of the A.P. be \( a_1 = a \) and the common difference be \( r \). The terms can be expressed as: - \( a_1 = a \) - \( a_2 = a + r \) - \( a_3 = a + 2r \) - \( a_4 = a + 3r \) - \( a_5 = a + 4r \) - \( a_6 = a + 5r \) ### Step 2: Use the first condition We know from the problem that: \[ a_1 + a_3 + a_5 = -12 \] Substituting the terms gives: \[ a + (a + 2r) + (a + 4r) = -12 \] Simplifying this: \[ 3a + 6r = -12 \] Dividing through by 3: \[ a + 2r = -4 \quad \text{(Equation 1)} \] ### Step 3: Use the second condition We also know: \[ a_1 a_2 a_3 = 8 \] Substituting the terms gives: \[ a(a + r)(a + 2r) = 8 \] Expanding this: \[ a(a^2 + 3ar + 2r^2) = 8 \] This simplifies to: \[ a^3 + 3a^2r + 2ar^2 = 8 \quad \text{(Equation 2)} \] ### Step 4: Substitute \( a \) from Equation 1 into Equation 2 From Equation 1, we can express \( a \) as: \[ a = -4 - 2r \] Substituting this into Equation 2: \[ (-4 - 2r)^3 + 3(-4 - 2r)^2r + 2(-4 - 2r)r^2 = 8 \] Calculating \( (-4 - 2r)^3 \): \[ = -64 - 48r - 24r^2 - 8r^3 \] Calculating \( 3(-4 - 2r)^2r \): \[ = 3(16 + 16r + 4r^2)r = 48r + 48r^2 + 12r^3 \] Calculating \( 2(-4 - 2r)r^2 \): \[ = -8r^2 - 4r^3 \] Combining these: \[ -64 - 48r - 24r^2 - 8r^3 + 48r + 48r^2 + 12r^3 - 8r^2 - 4r^3 = 8 \] This simplifies to: \[ -64 + 0r + 16r^2 = 8 \] Thus: \[ 16r^2 = 72 \implies r^2 = 4.5 \implies r = \pm \sqrt{4.5} \] ### Step 5: Find \( a \) and \( r \) Using \( r = \sqrt{4.5} \) or \( r = -\sqrt{4.5} \), we can find \( a \): From \( a + 2r = -4 \): \[ a = -4 - 2r \] ### Step 6: Calculate \( a_2 + a_4 + a_6 \) Now we need to find: \[ a_2 + a_4 + a_6 = (a + r) + (a + 3r) + (a + 5r) = 3a + 9r \] Substituting \( a = -4 - 2r \): \[ = 3(-4 - 2r) + 9r = -12 - 6r + 9r = -12 + 3r \] ### Step 7: Substitute \( r \) back to find the final answer Using \( r = \sqrt{4.5} \): \[ = -12 + 3\sqrt{4.5} \] If \( r = -\sqrt{4.5} \): \[ = -12 - 3\sqrt{4.5} \] ### Final Result The value of \( a_2 + a_4 + a_6 \) can be calculated based on the value of \( r \).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-3|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-4|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-1|1 Videos
  • RACE

    ALLEN|Exercise Race 21|14 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

Consider an A.P. a_1, a_2, a_3,......... such that a_3+a_5+a_8=11 and a_4+a_2=-2, then the value of a_1+a_6+a_7 is (a). -8 (b). 5 (c). 7 (d). 9

Consider an A. P .a_1,a_2,a_3,..... such that a_3+a_5+a_8 =11and a_4+a_2=-2 then the value of a_1+a_6+a_7 is.....

For an increasing A.P. a_1, a_2, a_n ifa_1=a_2+a_3+a_5=-12 and a_1a_3a_5=80 , then which of the following is/are true? a. a_1=-10 b. a_2=-1 c. a_3=-4 d. a_5=+2

The sixth term of an A.P., a_1,a_2,a_3,.............,a_n is 2 . If the quantity a_1a_4a_5 , is minimum then then the common difference of the A.P.

For an increasing A.P. a_1, a_2, a_n ifa_1=a_2+a_3+a_5=-12 and a_1a_3a_5=80 , then which of the following is/are true? a_1=-10 b. a_2=-1 c. a_3=-4 d. a_5=+2

Let a_1, a_2, a_3, ....a_n,......... be in A.P. If a_3 + a_7 + a_11 + a_15 = 72, then the sum of itsfirst 17 terms is equal to :

Three distinct numbers a_1 , a_2, a_3 are in increasing G.P. a_1^2 + a_2^2 + a_3^2 = 364 and a_1 + a_2 + a_3 = 26 then the value of a_10 if a_n is the n^(th) term of the given G.P. is: A. 2.3^9 B. 3^9 C. 2.3^(10) D. 3^(12)

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_n = (a_(n-1) xx a_(n-2))/(2), a_5 = -6 and a_6 = -18 , what is the value of a_3 ?

ALLEN-SEQUENCE AND PROGRESSION-Exercise O-2
  1. If a, b, c are in AP, then (a - c)^(2) equals

    Text Solution

    |

  2. If for an A.P. a1,a2,a3,........,an,........a1+a3+a5=-12 and a1a2a3=8,...

    Text Solution

    |

  3. If the sum of the first 11 terms of an arithmetical progression equals...

    Text Solution

    |

  4. Let s(1), s(2), s(3).... and t(1), t(2), t(3).... are two arithmetic s...

    Text Solution

    |

  5. If x ∈ R and the numbers (5 ^ (1−x) +5^ (x+1) , a/2, (25^ x +25^ −x ...

    Text Solution

    |

  6. Along a road lies an odd number of stones placed at intervals of 10 m....

    Text Solution

    |

  7. In an A.P. with first term 'a' and the common difference d(a, d!= 0), ...

    Text Solution

    |

  8. Let an, n in N is an A.P with common difference d and all whose terms ...

    Text Solution

    |

  9. Let a(1), a(2),…. and b(1),b(2),…. be arithemetic progression such tha...

    Text Solution

    |

  10. The arithmaeic mean of the nine numbers in the given set {9,99,999,….....

    Text Solution

    |

  11. If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n term...

    Text Solution

    |

  12. If a != 1 and l n a^(2) + (l n a^(2))^(2) + (l n a^(2))^(3) + ... = 3 ...

    Text Solution

    |

  13. The sum of the first three terms of an increasing G.P. is 21 and the s...

    Text Solution

    |

  14. a, b, c are distinct positive real in HP, then the value of the expres...

    Text Solution

    |

  15. An H.M. is inserted between the number 1/3 and an unknown number. If w...

    Text Solution

    |

  16. If abcd = 1, where a,b,c and d are positive real numbers, then find th...

    Text Solution

    |

  17. If 27 abc>= (a+b+c)^3 and 3a +4b +5c=12 then 1/a^2+1/b^3+1/c^5=10, w...

    Text Solution

    |

  18. If x=sum(n=0)^ooa^n , y=sum(n=0)^oob^n , z=sum(n=0)^ooc^n , w h e r e ...

    Text Solution

    |