Home
Class 12
MATHS
If (1 + 3 + 5 + .... " upto n terms ")/(...

If `(1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo`, then x is equal to

A

`10^(3)`

B

`10^(5)`

C

`10^(6)`

D

`10^(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will break it down into manageable parts. ### Step 1: Understanding the Given Information We have the equation: \[ \frac{1 + 3 + 5 + \ldots \text{ (up to n terms)}}{4 + 7 + 10 + \ldots \text{ (up to n terms)}} = \frac{20}{7 \log_{10} x} \] and we need to find \( x \) given: \[ n = \log_{10} x + \log_{10} x^{1/2} + \log_{10} x^{1/4} + \log_{10} x^{1/8} + \ldots \] ### Step 2: Simplifying the Expression for \( n \) The expression for \( n \) can be simplified using the properties of logarithms: \[ n = \log_{10} x + \log_{10} x^{1/2} + \log_{10} x^{1/4} + \log_{10} x^{1/8} + \ldots \] This is a geometric series where the first term \( a = \log_{10} x \) and the common ratio \( r = \frac{1}{2} \). The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} \] Substituting our values: \[ n = \frac{\log_{10} x}{1 - \frac{1}{2}} = 2 \log_{10} x \] ### Step 3: Finding the Sums of the Series Next, we need to find the sums of the series in the numerator and the denominator. **Numerator:** The series \( 1 + 3 + 5 + \ldots \) is an arithmetic series where: - First term \( a = 1 \) - Common difference \( d = 2 \) The sum of the first \( n \) terms of an arithmetic series is given by: \[ S_n = \frac{n}{2} (2a + (n - 1)d) \] Thus, \[ S_n = \frac{n}{2} (2 \cdot 1 + (n - 1) \cdot 2) = \frac{n}{2} (2 + 2n - 2) = n^2 \] **Denominator:** The series \( 4 + 7 + 10 + \ldots \) is also an arithmetic series where: - First term \( a = 4 \) - Common difference \( d = 3 \) Using the same formula: \[ S_n = \frac{n}{2} (2 \cdot 4 + (n - 1) \cdot 3) = \frac{n}{2} (8 + 3n - 3) = \frac{n}{2} (3n + 5) \] ### Step 4: Setting Up the Equation Now substituting these sums into our original equation: \[ \frac{n^2}{\frac{n}{2} (3n + 5)} = \frac{20}{7 \log_{10} x} \] Simplifying the left side: \[ \frac{2n}{3n + 5} = \frac{20}{7 \log_{10} x} \] ### Step 5: Substituting \( n = 2 \log_{10} x \) We substitute \( n \) with \( 2 \log_{10} x \): \[ \frac{2(2 \log_{10} x)}{3(2 \log_{10} x) + 5} = \frac{20}{7 \log_{10} x} \] Cross-multiplying gives: \[ 14 \log_{10} x \cdot 4 \log_{10} x = 20(3(2 \log_{10} x) + 5) \] This simplifies to: \[ 56 (\log_{10} x)^2 = 20(6 \log_{10} x + 5) \] \[ 56 (\log_{10} x)^2 = 120 \log_{10} x + 100 \] Rearranging gives: \[ 56 (\log_{10} x)^2 - 120 \log_{10} x - 100 = 0 \] ### Step 6: Solving the Quadratic Equation Using the quadratic formula: \[ \log_{10} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 56, b = -120, c = -100 \): \[ \log_{10} x = \frac{120 \pm \sqrt{(-120)^2 - 4 \cdot 56 \cdot (-100)}}{2 \cdot 56} \] Calculating the discriminant: \[ \sqrt{14400 + 22400} = \sqrt{36800} = 192 \] Thus, \[ \log_{10} x = \frac{120 \pm 192}{112} \] Calculating the two possible values: 1. \( \log_{10} x = \frac{312}{112} = \frac{78}{28} = 2.7857 \) 2. \( \log_{10} x = \frac{-72}{112} = -0.6429 \) (not valid since log cannot be negative) ### Step 7: Finding \( x \) Using \( \log_{10} x = \frac{78}{28} \): \[ x = 10^{\frac{78}{28}} = 10^{2.7857} \approx 10^{5} \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{10^5} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-3|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-4|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-1|1 Videos
  • RACE

    ALLEN|Exercise Race 21|14 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

if (1+3+5-...upto n terms)/(4+7+10+...upto n terms)=20/(7log_10 X and n = log_10 x + log_10 X^1/2 + log_10 X^1/4 + ............ + oo , then x is equal to

Given 2 log_(10) x + 1 = log_(10) 250 , find : (i) x (ii) log_(10) 2x

Find x, if : (i) log_(10) (x + 5) = 1 (ii) log_(10) (x + 1) + log_(10) (x - 1) = log_(10) 11 + 2 log_(10) 3

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

x^(log_(10)((y)/(z))).y^(log_(10)((z)/(x))).z^(log_(10)((x)/(y))) is equal to :

Find domain of f(x)=log_(10)log_(10)(1+x^(3)) .

Find the relation between x and y: log_(10)x+(1)/(2)log_(10)x+(1)/(4)log_(10)x+"...."=y "

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

[log_10⁡(x)]^2 − log_10⁡(x^3) + 2=0

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

ALLEN-SEQUENCE AND PROGRESSION-Exercise O-2
  1. If a, b, c are in AP, then (a - c)^(2) equals

    Text Solution

    |

  2. If for an A.P. a1,a2,a3,........,an,........a1+a3+a5=-12 and a1a2a3=8,...

    Text Solution

    |

  3. If the sum of the first 11 terms of an arithmetical progression equals...

    Text Solution

    |

  4. Let s(1), s(2), s(3).... and t(1), t(2), t(3).... are two arithmetic s...

    Text Solution

    |

  5. If x ∈ R and the numbers (5 ^ (1−x) +5^ (x+1) , a/2, (25^ x +25^ −x ...

    Text Solution

    |

  6. Along a road lies an odd number of stones placed at intervals of 10 m....

    Text Solution

    |

  7. In an A.P. with first term 'a' and the common difference d(a, d!= 0), ...

    Text Solution

    |

  8. Let an, n in N is an A.P with common difference d and all whose terms ...

    Text Solution

    |

  9. Let a(1), a(2),…. and b(1),b(2),…. be arithemetic progression such tha...

    Text Solution

    |

  10. The arithmaeic mean of the nine numbers in the given set {9,99,999,….....

    Text Solution

    |

  11. If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n term...

    Text Solution

    |

  12. If a != 1 and l n a^(2) + (l n a^(2))^(2) + (l n a^(2))^(3) + ... = 3 ...

    Text Solution

    |

  13. The sum of the first three terms of an increasing G.P. is 21 and the s...

    Text Solution

    |

  14. a, b, c are distinct positive real in HP, then the value of the expres...

    Text Solution

    |

  15. An H.M. is inserted between the number 1/3 and an unknown number. If w...

    Text Solution

    |

  16. If abcd = 1, where a,b,c and d are positive real numbers, then find th...

    Text Solution

    |

  17. If 27 abc>= (a+b+c)^3 and 3a +4b +5c=12 then 1/a^2+1/b^3+1/c^5=10, w...

    Text Solution

    |

  18. If x=sum(n=0)^ooa^n , y=sum(n=0)^oob^n , z=sum(n=0)^ooc^n , w h e r e ...

    Text Solution

    |