Home
Class 12
PHYSICS
The value of |vecA+vecB-vecC+vecD| can ...

The value of `|vecA+vecB-vecC+vecD|` can be zero if:-

A

`|vecA|=5,|vecB|=3,|vecC|=4,|vecD|=12`

B

`|vecA|=2sqrt(2),|vecB|=2,|vecC|=2,|vecD|=5`

C

`|vecA|=2sqrt(2),|vecB|=2,|vecC|=2,|vecD|=10`

D

`|vecA|=5,|vecB|=4,|vecC|=3,|vecD|=8`

Text Solution

AI Generated Solution

The correct Answer is:
To determine when the expression \( |\vec{A} + \vec{B} - \vec{C} + \vec{D}| \) can be zero, we need to analyze the conditions under which the vector sum results in the zero vector. ### Step-by-step Solution: 1. **Understanding Modulus of a Vector**: The modulus (or magnitude) of a vector \(\vec{V}\) is denoted as \(|\vec{V}|\) and represents its length. For the expression to equal zero, the vector itself must be the zero vector. 2. **Setting Up the Equation**: We need to find conditions under which: \[ \vec{A} + \vec{B} - \vec{C} + \vec{D} = \vec{0} \] This implies: \[ \vec{A} + \vec{B} + \vec{D} = \vec{C} \] 3. **Using Unit Vectors**: Let's express each vector in terms of unit vectors and their magnitudes: - \(\vec{A} = |\vec{A}| \hat{a}\) - \(\vec{B} = |\vec{B}| \hat{b}\) - \(\vec{C} = |\vec{C}| \hat{c}\) - \(\vec{D} = |\vec{D}| \hat{d}\) Here, \(\hat{a}, \hat{b}, \hat{c}, \hat{d}\) are the unit vectors in the direction of \(\vec{A}, \vec{B}, \vec{C}, \vec{D}\) respectively. 4. **Substituting into the Equation**: Substitute the expressions for the vectors into the equation: \[ |\vec{A}| \hat{a} + |\vec{B}| \hat{b} + |\vec{D}| \hat{d} = |\vec{C}| \hat{c} \] 5. **Assuming Directions**: To simplify, assume: - \(\hat{a} = \hat{b} = -\hat{d}\) - \(\hat{c} = \hat{d}\) This means all vectors are in the same or opposite directions. 6. **Rearranging the Equation**: The equation becomes: \[ |\vec{A}| + |\vec{B}| - |\vec{C}| + |\vec{D}| = 0 \] 7. **Testing the Options**: Now, we will test the provided options to see which one satisfies this equation. - **Option A**: \( |\vec{A}| = 5, |\vec{B}| = 3, |\vec{C}| = 4, |\vec{D}| = 12 \) \[ 5 + 3 - 4 + 12 = 16 \quad (\text{Not zero}) \] - **Option B**: \( |\vec{A}| = 2\sqrt{2}, |\vec{B}| = 2, |\vec{C}| = 2, |\vec{D}| = 5 \) \[ 2\sqrt{2} + 2 - 2 + 5 = 2\sqrt{2} + 5 \quad (\text{Not zero}) \] - **Option C**: \( |\vec{A}| = 2\sqrt{2}, |\vec{B}| = 2, |\vec{C}| = 2, |\vec{D}| = 10 \) \[ 2\sqrt{2} + 2 - 2 + 10 = 2\sqrt{2} + 10 \quad (\text{Not zero}) \] - **Option D**: \( |\vec{A}| = 5, |\vec{B}| = 4, |\vec{C}| = 3, |\vec{D}| = 8 \) \[ 5 + 4 - 3 + 8 = 14 \quad (\text{Not zero}) \] 8. **Conclusion**: After checking all options, it appears that none of the options satisfy the condition for the modulus to be zero.
Promotional Banner

Topper's Solved these Questions

  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (O-2) Comprehension Type Questions.|9 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (O-2)Matrix Type Questions.|3 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (O-2) Single Correct Type Questions.|16 Videos
  • TEST PAPERS

    ALLEN|Exercise MATHS|14 Videos
  • WAVE OPTICS

    ALLEN|Exercise Exercise 2 (Previous Year Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]

The value of [(veca-vecb, vecb-vecc, vecc-veca)] , where |veca|=1, |vecb|=5, |vecc|=3 , is

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If a ,ba n dc are three non-cop0lanar vector, non-zero vectors then the value of ( veca . veca ) vecb × vecc +( veca . vecb ) vecc × veca +( veca . vecc ) veca × vecb .

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{veca xx [vecb xx (vecc xx veca)]} is:

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If |veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0 then the value of ( veca. vecb + vecb.vecc) is equal tio

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0