Home
Class 12
PHYSICS
Find the torque (vectau=vecrxxvecF) of a...

Find the torque `(vectau=vecrxxvecF)` of a force `vecF=-3hati+hatj+3hatk` acting at the point `vecr=7hati+3hatj+hatk`

A

Statement-I is true, Statement-II is true, Statement-II is correct explanation for statement-I

B

Statement-I is true, Statement-II is true, Statement-II is NOT a correct explanation for statement-I

C

Statement-I is true, Statement-II is false.

D

Statement-I is false and Statement-II is true.

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque \(\vec{\tau} = \vec{r} \times \vec{F}\) of a force \(\vec{F} = -3\hat{i} + \hat{j} + 3\hat{k}\) acting at the point \(\vec{r} = 7\hat{i} + 3\hat{j} + \hat{k}\), we will use the cross product formula. ### Step-by-Step Solution: 1. **Identify the Vectors**: - The position vector \(\vec{r} = 7\hat{i} + 3\hat{j} + \hat{k}\) - The force vector \(\vec{F} = -3\hat{i} + \hat{j} + 3\hat{k}\) 2. **Set Up the Determinant**: We will use the determinant method to calculate the cross product. The determinant is set up as follows: \[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 7 & 3 & 1 \\ -3 & 1 & 3 \end{vmatrix} \] 3. **Calculate the Determinant**: We will expand this determinant using the cofactor expansion: \[ \vec{\tau} = \hat{i} \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 7 & 1 \\ -3 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 7 & 3 \\ -3 & 1 \end{vmatrix} \] Now, we calculate each of the 2x2 determinants: - For \(\hat{i}\): \[ \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} = (3)(3) - (1)(1) = 9 - 1 = 8 \] - For \(-\hat{j}\): \[ \begin{vmatrix} 7 & 1 \\ -3 & 3 \end{vmatrix} = (7)(3) - (1)(-3) = 21 + 3 = 24 \] - For \(\hat{k}\): \[ \begin{vmatrix} 7 & 3 \\ -3 & 1 \end{vmatrix} = (7)(1) - (3)(-3) = 7 + 9 = 16 \] 4. **Combine the Results**: Now substituting back into the expression for \(\vec{\tau}\): \[ \vec{\tau} = 8\hat{i} - 24\hat{j} + 16\hat{k} \] 5. **Final Result**: Thus, the torque vector is: \[ \vec{\tau} = 8\hat{i} - 24\hat{j} + 16\hat{k} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the torque of a force vecF= -3hati+hatj+5hatk acting at the point vecr=7hati+3hatj+hatk

Find the torque of a force vecF=2hati+hatj+4hatk acting at the point vecr=7hati+3hatj+hatk :

Find the torque of a force vecF=-3hati+2hatj+hatk acting at the point vecr=8hati+2hatj+3hatk about origin

What is the torque of the force vecF=(2hati+3hatj+4hatk)N acting at the point vecr=(2hati+3hatj+4hatk)m about the origin? (Note: Tortue, vectau=vecrxxvecF )

The torpue of force vecF=-2hati+2hatj+3hatk acting on a point vecr=hati-2hatj+hatk about origin will be :

The torque of force F =(2hati-3hatj+4hatk) newton acting at the point r=(3hati+2hatj+3hatk) metre about origin is (in N-m)

find the projection of the vector hati+3hatj+7hatk on the vector 7hati-hatj+8 hatk

Find the shortest distance between the lines vecr=3hati+5hatj+7hatk+lamda(hati-2hatj+hatk) and vecr=-hati+hatj-hatk+mu(2hati-6hatj+hatk)

Find the image of the point having position vector hati + 3hatj + 4hatk in the planer. vecr.(2hati – hatj+ hatk) + 3 = 0

Find the torque of a force F=a(hati+2hatj+3hatk) N about a point O. The position vector of point of application of force about O is r=(2hati+3hatj-hatk) m .