Home
Class 12
PHYSICS
If vectors vecA and vecB are such that |...

If vectors `vecA and vecB` are such that `|vecA+vecB|= |vecA|= |vecB|` then `|vecA-vecB|` may be equated to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition and apply the relevant vector formulas step by step. ### Step-by-Step Solution: 1. **Given Condition**: We have two vectors \(\vec{A}\) and \(\vec{B}\) such that \(|\vec{A} + \vec{B}| = |\vec{A}| = |\vec{B}|\). Let's denote the magnitude of both vectors as \(a\). Thus, we can write: \[ |\vec{A}| = |\vec{B}| = a \] 2. **Magnitude of the Sum**: From the given condition, we can express the magnitude of the sum of the vectors: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2|\vec{A}||\vec{B}|\cos\theta} \] where \(\theta\) is the angle between the vectors \(\vec{A}\) and \(\vec{B}\). 3. **Substituting Values**: Since \(|\vec{A}| = |\vec{B}| = a\), we substitute into the equation: \[ |\vec{A} + \vec{B}| = \sqrt{a^2 + a^2 + 2a^2\cos\theta} = \sqrt{2a^2(1 + \cos\theta)} = a\sqrt{2(1 + \cos\theta)} \] 4. **Equating Magnitudes**: According to the problem, we have: \[ |\vec{A} + \vec{B}| = a \] Therefore, we can set the two expressions equal: \[ a\sqrt{2(1 + \cos\theta)} = a \] 5. **Dividing by \(a\)**: Assuming \(a \neq 0\), we can divide both sides by \(a\): \[ \sqrt{2(1 + \cos\theta)} = 1 \] 6. **Squaring Both Sides**: Squaring both sides gives: \[ 2(1 + \cos\theta) = 1 \] Simplifying this, we find: \[ 1 + \cos\theta = \frac{1}{2} \] \[ \cos\theta = -\frac{1}{2} \] 7. **Finding the Angle**: The angle \(\theta\) that satisfies \(\cos\theta = -\frac{1}{2}\) is: \[ \theta = 120^\circ \quad \text{or} \quad \theta = 240^\circ \] 8. **Magnitude of the Difference**: Now we need to find \(|\vec{A} - \vec{B}|\): \[ |\vec{A} - \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - 2|\vec{A}||\vec{B}|\cos\theta} \] Substituting the values: \[ |\vec{A} - \vec{B}| = \sqrt{a^2 + a^2 - 2a^2\cos(120^\circ)} \] Since \(\cos(120^\circ) = -\frac{1}{2}\): \[ |\vec{A} - \vec{B}| = \sqrt{a^2 + a^2 + a^2} = \sqrt{3a^2} = a\sqrt{3} \] 9. **Final Result**: Therefore, the magnitude \(|\vec{A} - \vec{B}|\) is: \[ |\vec{A} - \vec{B}| = a\sqrt{3} \] ### Conclusion: The final answer is: \[ |\vec{A} - \vec{B}| = \sqrt{3} |\vec{A}| = \sqrt{3} |\vec{B}| \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Two vectors vecA and vecB are such that vecA+vecB=vecA-vecB . Then

For any two vectors veca and vecb prove that |veca.vecb|<=|veca||vecb|

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . where veca and vecb are given vectosrs, are