Home
Class 12
PHYSICS
If 3 cos theta+4 sin theta=A sin (theta+...

If `3 cos theta+4 sin theta=A sin (theta+alpha)`, then values of A and `alpha ` are

A

`V^(2)`

B

P

C

`PV^(2)`

D

RT

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \cos \theta + 4 \sin \theta = A \sin(\theta + \alpha)\), we will follow these steps: ### Step 1: Use the sine addition formula We know that: \[ \sin(\theta + \alpha) = \sin \theta \cos \alpha + \cos \theta \sin \alpha \] Thus, we can rewrite the right-hand side of the equation: \[ A \sin(\theta + \alpha) = A (\sin \theta \cos \alpha + \cos \theta \sin \alpha) = A \cos \alpha \sin \theta + A \sin \alpha \cos \theta \] ### Step 2: Rewrite the original equation Now we can equate the coefficients of \(\sin \theta\) and \(\cos \theta\) from both sides of the equation: \[ 3 \cos \theta + 4 \sin \theta = A \sin \alpha \cos \theta + A \cos \alpha \sin \theta \] ### Step 3: Compare coefficients From the above equation, we can compare the coefficients: - For \(\cos \theta\): \[ 3 = A \sin \alpha \] - For \(\sin \theta\): \[ 4 = A \cos \alpha \] ### Step 4: Solve for \(A\) We can express \(A\) in terms of \(\sin \alpha\) and \(\cos \alpha\): 1. From \(3 = A \sin \alpha\), we have: \[ A = \frac{3}{\sin \alpha} \] 2. From \(4 = A \cos \alpha\), we have: \[ A = \frac{4}{\cos \alpha} \] ### Step 5: Set the equations for \(A\) equal to each other Equating the two expressions for \(A\): \[ \frac{3}{\sin \alpha} = \frac{4}{\cos \alpha} \] ### Step 6: Cross-multiply and simplify Cross-multiplying gives: \[ 3 \cos \alpha = 4 \sin \alpha \] Dividing both sides by \(\cos \alpha\) (assuming \(\cos \alpha \neq 0\)): \[ 3 = 4 \tan \alpha \] Thus: \[ \tan \alpha = \frac{3}{4} \] ### Step 7: Find \(\alpha\) To find \(\alpha\), we can use the arctangent function: \[ \alpha = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 8: Find \(A\) Now, substituting \(\sin \alpha\) and \(\cos \alpha\) back to find \(A\): Using the identity \(\sin^2 \alpha + \cos^2 \alpha = 1\): Let \(\sin \alpha = 3k\) and \(\cos \alpha = 4k\) for some \(k\): \[ (3k)^2 + (4k)^2 = 1 \implies 9k^2 + 16k^2 = 1 \implies 25k^2 = 1 \implies k^2 = \frac{1}{25} \implies k = \frac{1}{5} \] Thus: \[ \sin \alpha = 3k = \frac{3}{5}, \quad \cos \alpha = 4k = \frac{4}{5} \] Now substituting back to find \(A\): \[ A = \frac{3}{\sin \alpha} = \frac{3}{\frac{3}{5}} = 5 \] ### Final Results Thus, the values of \(A\) and \(\alpha\) are: \[ A = 5, \quad \alpha = \tan^{-1}\left(\frac{3}{4}\right) \]

To solve the equation \(3 \cos \theta + 4 \sin \theta = A \sin(\theta + \alpha)\), we will follow these steps: ### Step 1: Use the sine addition formula We know that: \[ \sin(\theta + \alpha) = \sin \theta \cos \alpha + \cos \theta \sin \alpha \] Thus, we can rewrite the right-hand side of the equation: ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If 3costheta + 4sin theta = A sin (theta +alpha) , then values of A and alpha are

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek , then the value of k

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If alpha , beta are two different values of theta lying between 0 and 2pi which satisfy the equation 6 cos theta + 8 sin theta=9, find the value of sin ( alpha + beta).

If max{5sin theta+3sin(theta-alpha)}=7 then the set of possible vaues of alpha is theta in R

If A=2 sin^2 theta - cos 2 theta and A in [alpha, beta] , then find the values of alpha and beta.

If sin theta_1 + sintheta_2 + sin theta_3 = 3 then find the value of cos theta_1 + cos theta_2 + cos theta_3.