Home
Class 11
MATHS
The value of r for which .^(20)C(r ), ...

The value of r for which
`.^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r )` is maximum, is

A

20

B

15

C

11

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( r \) for which the expression \[ \binom{20}{r} \cdot \binom{20}{r-1} \cdot \binom{20}{1} + \binom{20}{2} + \ldots + \binom{20}{0} \cdot \binom{20}{r} \] is maximized. ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression can be interpreted as a sum of products of binomial coefficients. The first part, \( \binom{20}{r} \cdot \binom{20}{r-1} \cdot \binom{20}{1} \), represents a specific combination of selections from a set of 20 items. 2. **Using Binomial Theorem**: We can use the Binomial Theorem to expand \( (1 + x)^{20} \): \[ (1 + x)^{20} = \sum_{k=0}^{20} \binom{20}{k} x^k \] This gives us the coefficients of \( x^k \) as \( \binom{20}{k} \). 3. **Identifying the Maximum**: The maximum value of \( \binom{20}{k} \) occurs at \( k = 10 \) (since \( n = 20 \) is even). This is due to the symmetric property of binomial coefficients. 4. **Finding the Value of \( r \)**: To maximize the expression, we need to find \( r \) such that both \( \binom{20}{r} \) and \( \binom{20}{r-1} \) are maximized. Since \( \binom{20}{k} \) is maximized at \( k = 10 \), we can set \( r = 10 \) or \( r = 9 \) (since \( r-1 \) would then be 9 or 10). 5. **Conclusion**: Thus, the value of \( r \) that maximizes the expression is \( r = 10 \). ### Final Answer: The value of \( r \) for which the expression is maximum is \( r = 10 \).
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-A)|5 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -1|2 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-2)|6 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The value of .^(20)C_(0)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

let 2..^(20)C_(0)+5.^(20)C_(1)+8.^(20)C_(2)+?.+62.^(20)C_(20) . Then sum of this series is

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE (J-M)
  1. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  2. The value of (.^(21)C(1) - .^(10)C(1)) + (.^(21)C(2) - .^(10)C(2)) + (...

    Text Solution

    |

  3. The sum of the co-efficients of all odd degree terms in the expansion ...

    Text Solution

    |

  4. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  5. The positive value of lambda for which the coefficient of x^(2) in the...

    Text Solution

    |

  6. The sum of the real values of x for which the middle term in the binom...

    Text Solution

    |

  7. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |

  8. Let (x+10)^(50)+(x-10)^(50)=a(0)+a(1)x+a(2)x^(2)+...+a(50)x^(50) for a...

    Text Solution

    |

  9. Let Sn=1+q+q^2 +...+q^n and Tn =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n...

    Text Solution

    |

  10. Ratio of the 5^(th) term from the beginning to the 5^(th) term from th...

    Text Solution

    |

  11. The number of irrational terms in expansion (7^(1/5)-3^(1/10))^60 is ...

    Text Solution

    |

  12. The sum of the series .^(20)C(0)-.^(20)C(1)-.^(20)C(2)-.^(20)C(3)+…+,....

    Text Solution

    |

  13. If some three consecutive coefficeints in the binomial expanison of (x...

    Text Solution

    |

  14. If the coefficients of x^(2) and x^(3)are both zero, in the expansion ...

    Text Solution

    |

  15. The smallest natural number n, such that the coefficient of x in the e...

    Text Solution

    |

  16. If .^(20)C(1)+(2^(2)).^(20)C(2)+(3^(2)).^(20)C(3)+……..+(20^(2)).^(20)C...

    Text Solution

    |

  17. The term independent of x in the expansion of (1/60-(x^(8))/81).(2x^(...

    Text Solution

    |